Glucagon DuoSet ELISA

R&D Systems | Catalog # DY1249

R&D Systems
Loading...

Key Product Details

Assay Type

Solid Phase Sandwich ELISA

Assay Range

31.2-2000 pg/mL

Sample Type

Cell culture supernates, serum, and plasma
Note: Diluents for complex matrices, such as serum and plasma, should be evaluated prior to use in this DuoSet

Reactivity

Multi-Species

Glucagon DuoSet ELISA Features

  • Optimized capture and detection antibody pairings with recommended concentrations save lengthy development time
  • Development protocols are provided to guide further assay optimization
  • Assay can be customized to your specific needs
  • Economical alternative to complete kits
Loading...

Product Summary for Glucagon DuoSet ELISA

This DuoSet ELISA Development kit contains the basic components required for the development of sandwich ELISAs to measure natural and recombinant Glucagon. The suggested diluent is suitable for the analysis of most cell culture supernate samples. Diluents for complex matrices, such as serum and plasma, should be evaluated prior to use in this DuoSet.

 

 

Product Specifications

Assay Format

96-well strip plate (sold separately)

Sample Volume Required

100 µL

Detection Method

Colorimetric ELISA - 450nm (TMB)

Conjugate

Biotin

Label

HRP

Scientific Data Images for Glucagon DuoSet ELISA

Glucagon ELISA Standard Curve

Glucagon ELISA Standard Curve

Kit Contents for Glucagon DuoSet ELISA

  • Capture Antibody
  • Detection Antibody
  • Recombinant Standard
  • Streptavidin conjugated to horseradish-peroxidase (Streptavidin-HRP)

Other Reagents Required

DuoSet Ancillary Reagent Kit 2 (5 plates): (Catalog # DY008) containing 96 well microplates, plate sealers, substrate solution, stop solution, plate coating buffer (PBS), wash buffer, and Reagent Diluent Concentrate 2.

The components listed above may be purchased separately:

PBS: (Catalog # DY006), or 137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.2 - 7.4, 0.2 µm filtered

Wash Buffer: (Catalog # WA126), or 0.05% Tween® 20 in PBS, pH 7.2-7.4

Reagent Diluent: (Catalog # DY995), or 1% BSA in PBS, pH 7.2-7.4, 0.2 µm filtered

Substrate Solution: 1:1 mixture of Color Reagent A (H2O2) and Color Reagent B (Tetramethylbenzidine) (Catalog # DY999)

Stop Solution: 2 N H2SO4 (Catalog # DY994)

Microplates: R&D Systems (Catalog # DY990)

Plate Sealers: ELISA Plate Sealers (Catalog # DY992)

Preparation and Storage

Shipping

The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Store the unopened product at 2 - 8 °C. Do not use past expiration date.

Background: Glucagon

Glucagon is a 29 amino acid (aa) peptide produced by the pancreas that plays a critical role in glucose metabolism and homeostasis (1-4). The Glucagon precursor mRNA is expressed by alpha cells ( alpha -cells) of the pancreas, L cells of the intestine, and in the brain (1, 2). Only the pancreatic alpha -cells express the prohormone convertase PC2, also called PCSK2, which is required to produce Glucagon (2). Intestinal L cells instead express the prohormone convertase PC1, which processes the precursor to the Glucagon-overlapping peptides glicentin and oxyntomodulin. L cells also produce two Glucagon-like peptides, GLP-1 and GLP-2 that are derived from the same Glucagon precursor and influence glucose metabolism, but do not share any common sequence with Glucagon (1, 2). The aa sequence of the mature Glucagon peptide is identical in human, mouse, rat, pig, dog, horse, cow, sheep, and Xenopus.
In normal metabolism, Glucagon is secreted in response to low blood glucose (hypoglycemia) and downregulated in response to high blood glucose (hyperglycemia). Although Glucagon binding sites are found in liver, brain, pancreas, kidney, intestine, and adipose tissue, the main activity of Glucagon receptors occurs in the liver, where Glucagon stimulates gluconeogenesis and glycogenolysis, thereby increasing blood glucose (1-4). It is particularly important that the brain receive sufficient glucose, since it is unable to store more than a minute quantity. Therefore the release of Glucagon from alpha -cells is under control by both hormones and neurotransmitters, and is very responsive to circulating glucose concentration. Insulin, and/or the zinc that islet beta cells secrete with it, downregulates Glucagon secretion in intact islets (5, 6). Glucagon secretion is also downregulated by the neurotransmitter gamma -aminobutyric acid (GABA), somatostatin produced by islet delta -cells, and GLP-1, but is enhanced by the neurotransmitter L-glutamate, amino acids (especially arginine), and Glucagon itself (2-4, 7). Through receptors on the alpha -cells, these substances affect potassium, sodium, and calcium channel activity and alter intracellular calcium concentration (2-4). Glucose suppression of Glucagon secretion is probably indirect, acting through paracrine signals from other islet cells (8).
Like insulin, Glucagon is dysregulated in type 2 diabetes (T2D) and contributes to its pathology (2-4). Glucagon secretion is less responsive to insulin-mediated suppression in times of high circulating glucose, causing glucagonemia, and increasing the risk of hyperglycemia. Glucagon is also regulated by some of the same messengers that regulate insulin (10-12). Leptin inhibits alpha -cell glucagon secretion and stimulates beta -cell insulin secretion, but glucagon blunts the leptin-mediated insulin secretion (10). Islet alpha -cells express ghrelin receptors and respond to ghrelin by increasing Glucagon secretion (11). Glucocorticoids, activated by 11 beta -HSD1, depress Glucagon secretion in hypoglycemia and insulin secretion in hyperglycemia (12). Although genetic polymorphisms of the Glucagon receptor are associated with T2D, downregulation of Glucagon secretion or deletion of the Glucagon receptor in mice that are susceptible to T2D actually improves glycemic control (13, 14).

Alternate Names

GCG, GRPP

Entrez Gene IDs

2641 (Human); 14526 (Mouse); 24952 (Rat)

Gene Symbol

GCG

Additional Glucagon Products

Product Documents for Glucagon DuoSet ELISA

Certificate of Analysis

To download a Certificate of Analysis, please enter a lot or batch number in the search box below.

Note: Certificate of Analysis not available for kit components.

Product Specific Notices for Glucagon DuoSet ELISA

For research use only

Citations for Glucagon DuoSet ELISA

Customer Reviews for Glucagon DuoSet ELISA (1)

5 out of 5
1 Customer Rating
5 Stars
100%
4 Stars
0%
3 Stars
0%
2 Stars
0%
1 Stars
0%

Have you used Glucagon DuoSet ELISA?

Submit a review and receive an Amazon gift card!

$25/€18/£15/$25CAN/¥2500 Yen for a review with an image

$10/€7/£6/$10CAN/¥1110 Yen for a review without an image

Submit a review
Amazon Gift Card
Showing  1 - 11 review Showing All
Filter By:
  • Glucagon DuoSet ELISA
    Name: Anonymous
    Sample Tested: Whole blood
    Verified Customer | Posted 11/16/2025

There are no reviews that match your criteria.

Showing  1 - 11 review Showing All

Protocols

View specific protocols for Glucagon DuoSet ELISA (DY1249):

GENERAL ELISA PROTOCOL

Plate Preparation

  1. Dilute the Capture Antibody to the working concentration in PBS without carrier protein. Immediately coat a 96-well microplate with 100 μL per well of the diluted Capture Antibody. Seal the plate and incubate overnight at room temperature.
  2. Aspirate each well and wash with Wash Buffer, repeating the process two times for a total of three washes. Wash by filling each well with Wash Buffer (400 μL) using a squirt bottle, manifold dispenser, or autowasher. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining Wash Buffer by aspirating or by inverting the plate and blotting it against clean paper towels.
  3. Block plates by adding 300 μL Reagent Diluent to each well. Incubate at room temperature for a minimum of 1 hour.
  4. Repeat the aspiration/wash as in step 2. The plates are now ready for sample addition.

Assay Procedure

  1. Add 100 μL of sample or standards in Reagent Diluent, or an appropriate diluent, per well. Cover with an adhesive strip and incubate 2 hours at room temperature.
  2. Repeat the aspiration/wash as in step 2 of Plate Preparation.
  3. Add 100 μL of the Detection Antibody, diluted in Reagent Diluent, to each well. Cover with a new adhesive strip and incubate 2 hours at room temperature.
  4. Repeat the aspiration/wash as in step 2 of Plate Preparation.
  5. Add 100 μL of the working dilution of Streptavidin-HRP to each well. Cover the plate and incubate for 20 minutes at room temperature. Avoid placing the plate in direct light.
  6. Repeat the aspiration/wash as in step 2.
  7. Add 100 μL of Substrate Solution to each well. Incubate for 20 minutes at room temperature. Avoid placing the plate in direct light.
  8. Add 50 μL of Stop Solution to each well. Gently tap the plate to ensure thorough mixing.
  9. Determine the optical density of each well immediately, using a microplate reader set to 450 nm. If wavelength correction is available, set to 540 nm or 570 nm. If wavelength correction is not available, subtract readings at 540 nm or 570 nm from the readings at 450 nm. This subtraction will correct for optical imperfections in the plate. Readings made directly at 450 nm without correction may be higher and less accurate.

Find general support by application which include: protocols, troubleshooting, illustrated assays, videos and webinars.

FAQs

No product specific FAQs exist for this product.

View all FAQs for ELISA Kits