Recombinant Mouse IL-13 Protein

Earn double rewards for reviews
Formulations:
Catalog # Availability Size / Price Qty
413-ML-005
413-ML-025
413-ML-050
413-ML-100
413-ML-250
413-ML-01M
Recombinant Mouse IL-13 Protein Data
2 Images
Product Details
Citations (69)
FAQs
Reviews (3)

Recombinant Mouse IL-13 Protein Summary

Purity
>97%, by SDS-PAGE under reducing conditions and visualized by silver stain.
Endotoxin Level
<0.01 EU per 1 μg of the protein by the LAL method.
Activity
Measured in a cell proliferation assay using TF‑1 human erythroleukemic cells. Kitamura, T. et al. (1989) J. Cell Physiol. 140:323. The ED50 for this effect is 0.75‑3 ng/mL.
Source
E. coli-derived mouse IL-13 protein
Ser26-Phe131
Accession #
N-terminal Sequence
Analysis
Ser26
Predicted Molecular Mass
11.5 kDa
SDS-PAGE
9 kDa, reducing conditions

Product Datasheets

Carrier Free

What does CF mean?

CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins. Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration. The carrier free version does not contain BSA.

What formulation is right for me?

In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard. In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.

413-ML

Formulation Lyophilized from a 0.2 μm filtered solution in PBS with BSA as a carrier protein. *1 mg pack size (01M) is supplied as a 0.2 µm filtered solution in PBS with BSA as a carrier protein.
Reconstitution Reconstitute at 50 μg/mL in sterile PBS containing at least 0.1% human or bovine serum albumin.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.

413-ML/CF

Formulation Lyophilized from a 0.2 μm filtered solution in PBS. *1 mg pack size (01M) is supplied as a 0.2 µm filtered solution in PBS.
Reconstitution Reconstitute 5 µg vials at 50 µg/mL in sterile PBS. Reconstitute 25 µg or larger vials at 100 µg/mL in sterile PBS.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.

Data Images

Bioactivity View Larger

Recombinant Mouse IL-13 (Catalog # 413-ML) stimulates cell proliferation of the TF-1 human erythroleukemic cell line. The ED50for this effect is 0.75-3 ng/mL.

SDS-PAGE View Larger

1 μg/lane of Recombinant Mouse IL-13 was resolved with SDS-PAGE under reducing (R) conditions and visualized by silver staining, showing a single band at 9 kDa.

Reconstitution Calculator

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Background: IL-13

IL-13 is a 17 kDa immunoregulatory cytokine that plays a key role in the pathogenesis of allergic asthma and atopy. It is secreted by Th1 and Th2 CD4+ T cells, NK cells, visceral smooth muscle cells, eosinophils, mast cells, and basophils (1 - 3). IL-13 circulates as a monomer with two internal disulfide bonds that contribute to a bundled four alpha -helix configuration (4, 5). Mature mouse IL-13 shares 57%, 75%, and 58% amino acid sequence identity with human, rat, and rhesus IL-13, respectively. Despite the low homology, it exhibits cross-species activity between human, mouse, and rat (6, 7). IL-13 has diverse activities on numerous cell types (8). On macrophages, IL-13 suppresses the production of proinflammatory cytokines and other cytotoxic substances. On B cells, IL-13 induces immunoglobulin class switching to IgE, upregulates the expression of MHC class II, CD71, CD72, and CD23, and costimulates proliferation. IL-13 upregulates IL-6 while downregulating IL-1 and TNF-alpha production by fibroblasts and endothelial cells. IL-13 binds with low affinity to IL-13 R alpha 1, triggering IL-13 R alpha 1 association with IL-4 R alpha. This high affinity receptor complex also functions as the type 2 IL-4 receptor complex (9, 10). Additionally, IL-13 binds with high affinity to IL-13 R alpha 2 which is expressed intracellularly, on the cell surface, and as a soluble molecule (11 - 14). IL-13 R alpha 2 regulates the bioavailability of both IL-13 and IL-4 and is overexpressed in glioma and several bronchial pathologies (10, 15, 16). Compared to wild type IL-13, the atopy-associated R110Q variant of IL-13 elicits increased responsiveness from eosinophils that express low levels of IL-13 R alpha 2 (17).

References
  1. Wills-Karp, M. (2004) Immunol. Rev. 202:175.
  2. Nakajima, H. and K. Takatsu (2007) Int. Arch. Allergy Immunol. 142:265.
  3. Brown, K.D. et al. (1989) J. Immunol. 142:679.
  4. Moy, F.J. et al. (2001) J. Mol. Biol. 310:219.
  5. Eisenmesser, E.Z. et al. (2001) J. Mol. Biol. 310:231.
  6. Ruetten, H. and C. Thiemermann (1997) Shock 8:409.
  7. Lakkis, F.G. et al. (1997) Biochem. Biophys. Res. Commun. 235:529.
  8. Wynn, T.A. (2003) Annu. Rev. Immunol. 21:425.
  9. Andrews, A.L. et al. (2002) J. Biol. Chem. 277:46073.
  10. Tabata, Y. et al. (2007) Curr. Allergy Asthma Rep. 7:338.
  11. Chiaramonte, M.G. et al. (2003) J. Exp. Med. 197:687.
  12. Daines, M.O. and G.K. Hershey (2002) J. Biol. Chem. 227:10387.
  13. Matsumura, M. et al. (2007) Biochem. Biophys. Res. Commun. 360:464.
  14. Tabata, Y. et al. (2007) J. Immunol. 177:7905.
  15. Andrews, A.L. et al. (2006) J. Allergy Clin. Immunol. 118:858.
  16. Joshi, B.H. et al. (2006) Vitam. Horm. 74:479.
  17. Andrews, A.-L. et al. (2007) J. Allergy Clin. Immunol. 120:91.
Long Name
Interleukin 13
Entrez Gene IDs
3596 (Human); 16163 (Mouse); 116553 (Rat); 574325 (Primate)
Alternate Names
ALRHMGC116789; BHR1interleukin-13; IL13; IL-13; IL-13MGC116788; interleukin 13; MGC116786; NC30; P600

Citations for Recombinant Mouse IL-13 Protein

R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.

69 Citations: Showing 1 - 10
Filter your results:

Filter by:

  1. Cycling hypoxia promotes a pro-inflammatory phenotype in macrophages via JNK/p65 signaling pathway
    Authors: V Delprat, C Tellier, C Demazy, M Raes, O Feron, C Michiels
    Sci Rep, 2020;10(1):882.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  2. Resolution of Cutaneous Leishmaniasis and Persistence of Leishmania major in the Absence of Arginase 1
    Authors: K Paduch, A Debus, B Rai, U Schleicher, C Bogdan
    J. Immunol., 2019;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  3. Nephropathy in Hypertensive Animals Is Linked to M2 Macrophages and Increased Expression of the YM1/Chi3l3 Protein
    Authors: PAM Cavalcante, N Alenina, A Budu, LC Freitas-Li, T Alves-Silv, JSH Agudelo, F Qadri, NOS Camara, M Bader, RC Araújo
    Mediators Inflamm., 2019;2019(0):9086758.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Cell Culture
  4. Group 2 innate lymphoid cells (ILC2) are regulated by stem cell factor during chronic asthmatic disease
    Authors: W Fonseca, AJ Rasky, C Ptaschinsk, SH Morris, SKK Best, M Phillips, CA Malinczak, NW Lukacs
    Mucosal Immunol, 2019;12(2):445-456.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  5. Chi3l3: a potential key orchestrator of eosinophil recruitment in meningitis induced by Angiostrongylus cantonensis
    Authors: S Wan, X Sun, F Wu, Z Yu, L Wang, D Lin, Z Li, Z Wu, X Sun
    J Neuroinflammation, 2018;15(1):31.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  6. Duox1 Regulates Primary B Cell Function under the Influence of IL-4 through BCR-Mediated Generation of Hydrogen Peroxide
    Authors: R Sugamata, A Donko, Y Murakami, HE Boudreau, CF Qi, J Kwon, TL Leto
    J. Immunol., 2018;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  7. The Esophageal Organoid System Reveals Functional Interplay Between Notch and Cytokines in Reactive Epithelial�Changes
    Authors: Y Kasagi, PM Chandramou, KA Whelan, K Tanaka, V Giroux, M Sharma, J Wang, AJ Benitez, M DeMarshall, JW Tobias, KE Hamilton, GW Falk, JM Spergel, AJ Klein-Szan, AK Rustgi, AB Muir, H Nakagawa
    Cell Mol Gastroenterol Hepatol, 2018;5(3):333-352.
    Species: Mouse
    Sample Types: Organoids
    Applications: Bioassay
  8. Toll-Interacting Protein, Tollip, Inhibits IL-13-Mediated Pulmonary Eosinophilic Inflammation in Mice
    Authors: Y Ito, N Schaefer, A Sanchez, D Francisco, R Alam, RJ Martin, JG Ledford, C Stevenson, D Jiang, L Li, M Kraft, HW Chu
    J Innate Immun, 2018;0(0):.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  9. Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners
    Authors: C Farruggia, MB Kim, M Bae, Y Lee, TX Pham, Y Yang, MJ Han, YK Park, JY Lee
    J. Nutr. Biochem., 2018;62(0):202-209.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  10. MicroRNA-let-7e regulates the progression and development of allergic rhinitis by targeting suppressor of cytokine signaling 4 and activating Janus kinase 1/signal transducer and activator of transcription 3 pathway
    Authors: L Li, S Zhang, X Jiang, Y Liu, K Liu, C Yang
    Exp Ther Med, 2018;15(4):3523-3529.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  11. Interleukin-18 Amplifies Macrophage Polarization and Morphological Alteration, Leading to Excessive Angiogenesis
    Authors: T Kobori, S Hamasaki, A Kitaura, Y Yamazaki, T Nishinaka, A Niwa, S Nakao, H Wake, S Mori, T Yoshino, M Nishibori, H Takahashi
    Front Immunol, 2018;9(0):334.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  12. High-Resolution Mapping and Dynamics of the Transcriptome, Transcription Factors, and Transcription Co-Factor Networks in Classically and Alternatively Activated Macrophages
    Authors: A Das, CS Yang, S Arifuzzama, S Kim, SY Kim, KH Jung, YS Lee, YG Chai
    Front Immunol, 2018;9(0):22.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Cell Culture
  13. Enhanced Pro-Inflammatory Response of Macrophages to Interleukin-33 in an Allergic Environment
    Authors: N Chia, RK Kumar, PS Foster, C Herbert
    Int. Arch. Allergy Immunol., 2018;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  14. The CD45(+) fraction in murine adipose tissue-derived stromal cells harbor immune-inhibitory inflammatory cells
    Authors: A Nasti, Y Sakai, A Seki, GB Buffa, T Komura, H Mochida, M Yamato, K Yoshida, TTB Ho, M Takamura, S Usui, T Wada, M Honda, S Kaneko
    Eur. J. Immunol., 2017;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  15. Mitochondrial CaMKII inhibition in airway epithelium protects against allergic asthma
    Authors: SC Sebag, OM Koval, JD Paschke, CJ Winters, OA Jaffer, R Dworski, FS Sutterwala, ME Anderson, IM Grumbach
    JCI Insight, 2017;2(3):e88297.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  16. Pneumocystis-Driven Inducible Bronchus-Associated Lymphoid Tissue Formation Requires Th2 and Th17 Immunity
    Authors: T Eddens, W Elsegeiny, ML Garcia-Her, P Castillo, G Trevejo-Nu, K Serody, BT Campfield, SA Khader, K Chen, J Rangel-Mor, JK Kolls
    Cell Rep, 2017;18(13):3078-3090.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  17. Liraglutide dictates macrophage phenotype in apolipoprotein E null mice during early atherosclerosis
    Authors: R Bruen, S Curley, S Kajani, D Crean, ME O'Reilly, MB Lucitt, CG Godson, FC McGillicud, O Belton
    Cardiovasc Diabetol, 2017;16(1):143.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  18. Cationic CaMKII Inhibiting Nanoparticles Prevent Allergic Asthma
    Authors: AS Morris, SC Sebag, JD Paschke, A Wongrakpan, K Ebeid, ME Anderson, IM Grumbach, AK Salem
    Mol. Pharm., 2017;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  19. IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population
    Authors: DC Nascimento, PH Melo, AR Piñeros, RG Ferreira, DF Colón, PB Donate, FV Castanheir, A Gozzi, PG Czaikoski, W Niedbala, MC Borges, DS Zamboni, FY Liew, FQ Cunha, JC Alves-Filh
    Nat Commun, 2017;8(0):14919.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  20. Interleukin-13 reduces cardiac injury and prevents heart dysfunction in viral myocarditis via enhanced M2 macrophage polarization
    Authors: H Yang, Y Chen, C Gao
    Oncotarget, 2017;8(59):99495-99503.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  21. Dormant 5-lipoxygenase in inflammatory macrophages is triggered by exogenous arachidonic acid
    Authors: CA Sorgi, S Zarini, SA Martin, RL Sanchez, RF Scandiuzzi, MA Gijón, C Guijas, N Flamand, RC Murphy, LH Faccioli
    Sci Rep, 2017;7(1):10981.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  22. Therapeutic reversal of food allergen sensitivity by mature retinoic acid-differentiated dendritic cell induction of LAG3(+)CD49b(-)Foxp3(-) regulatory T�cells
    Authors: W Dawicki, C Li, J Town, X Zhang, JR Gordon
    J. Allergy Clin. Immunol., 2017;139(5):1608-1620.e3.
    Species: Mouse
    Sample Types: Serum
    Applications: ELISA (Standard)
  23. Disruption of the TWEAK/Fn14 pathway prevents 5-fluorouracil-induced diarrhea in mice
    Authors: T Sezaki, Y Hirata, T Hagiwara, YI Kawamura, T Okamura, R Takanashi, K Nakano, M Tamura-Nak, LC Burkly, T Dohi
    World J. Gastroenterol., 2017;23(13):2294-2307.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  24. Crosstalk between glucocorticoids and IL-4 modulates Ym1 expression in alternatively activated myeloid cells
    Authors: N Ng Kuet Le, F Brombacher, AH Dalpke, M Weitnauer
    Immunobiology, 2017;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  25. Utilization of host polyamines in alternatively activated macrophages promotes chronic infection by Brucella abortus
    Authors: T Kerrinnes, MG Winter, BM Young, VE Diaz-Ochoa, SE Winter, RM Tsolis
    Infect. Immun., 2017;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  26. Early infiltration of p40IL12(+)CCR7(+)CD11b(+) cells is critical for fibrosis development
    Authors: Niels Olsen Saraiva Camara
    Immun Inflamm Dis, 2016;4(3):300-14.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  27. IL4RA on lymphatic endothelial cells promotes T cell egress during sclerodermatous graft versus host disease
    JCI Insight, 2016;1(12):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  28. Identification and Function of Fibrocytes in Skeletal Muscle Injury Repair and Muscular Dystrophy
    J. Immunol., 2016;197(12):4750-4761.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  29. Roles of endoplasmic reticulum stress-mediated apoptosis in M1-polarized macrophages during mycobacterial infections
    Sci Rep, 2016;6(0):37211.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  30. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.
    Authors: Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, Tanaka K, Czaja M
    Autophagy, 2015;11(2):271-84.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  31. IRAK-M promotes alternative macrophage activation and fibroproliferation in bleomycin-induced lung injury.
    Authors: Ballinger M, Newstead M, Zeng X, Bhan U, Mo X, Kunkel S, Moore B, Flavell R, Christman J, Standiford T
    J Immunol, 2015;194(4):1894-904.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  32. TREM-2 promotes macrophage survival and lung disease after respiratory viral infection.
    Authors: Wu K, Byers D, Jin X, Agapov E, Alexander-Brett J, Patel A, Cella M, Gilfilan S, Colonna M, Kober D, Brett T, Holtzman M
    J Exp Med, 2015;212(5):681-97.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  33. Macrophage PTEN regulates expression and secretion of arginase I modulating innate and adaptive immune responses.
    Authors: Sahin E, Haubenwallner S, Kuttke M, Kollmann I, Halfmann A, Dohnal A, Chen L, Cheng P, Hoesel B, Einwallner E, Brunner J, Kral J, Schrottmaier W, Thell K, Saferding V, Bluml S, Schabbauer G
    J Immunol, 2014;193(4):1717-27.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  34. S100A8 induces IL-10 and protects against acute lung injury.
    Authors: Hiroshima Y, Hsu K, Tedla N, Chung Y, Chow S, Herbert C, Geczy C
    J Immunol, 2014;192(6):2800-11.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  35. Axl receptor blockade ameliorates pulmonary pathology resulting from primary viral infection and viral exacerbation of asthma.
    Authors: Shibata T, Habiel D, Coelho A, Kunkel S, Lukacs N, Hogaboam C
    J Immunol, 2014;192(8):3569-81.
    Species: Mouse
    Sample Types: Tissue Homogenates
    Applications: Luminex (Standard)
  36. Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo.
    Authors: Cao Q, Wang Y, Zheng D, Sun Y, Wang C, Wang X, Lee V, Wang Y, Zheng G, Tan T, Wang Y, Alexander S, Harris D
    Kidney Int, 2014;85(4):794-806.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  37. IkappaB kinase activity drives fetal lung macrophage maturation along a non-M1/M2 paradigm.
    Authors: Stouch A, Zaynagetdinov R, Barham W, Stinnett A, Slaughter J, Yull F, Hoffman H, Blackwell T, Prince L
    J Immunol, 2014;193(3):1184-93.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  38. Constitutive production of IL-13 promotes early-life Chlamydia respiratory infection and allergic airway disease.
    Authors: Starkey M, Essilfie A, Horvat J, Kim R, Nguyen D, Beagley K, Mattes J, Foster P, Hansbro P
    Mucosal Immunol, 2013;6(3):569-79.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  39. IL-4/IL-13-dependent and independent expression of miR-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation.
    Authors: Veremeyko, Tatyana, Siddiqui, Shafiudd, Sotnikov, Ilya, Yung, Amanda, Ponomarev, Eugene D
    PLoS ONE, 2013;8(12):e81774.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  40. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity.
    Authors: Palm N, Rosenstein R, Yu S, Schenten D, Florsheim E, Medzhitov R
    Immunity, 2013;39(5):976-85.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  41. 12/15-lipoxygenase expressed in non-epithelial cells causes airway epithelial injury in asthma.
    Authors: Mabalirajan U, Rehman R, Ahmad T, Kumar S, Leishangthem G, Singh S, Dinda A, Biswal S, Agrawal A, Ghosh B
    Sci Rep, 2013;3(0):1540.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  42. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis.
    Authors: McHedlidze T, Waldner M, Zopf S, Walker J, Rankin A, Schuchmann M, Voehringer D, McKenzie A, Neurath M, Pflanz S, Wirtz S
    Immunity, 2013;39(2):357-71.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  43. Epithelial cell-derived IL-25, but not Th17 cell-derived IL-17 or IL-17F, Is crucial for murine asthma.
    Authors: Suzukawa M, Morita H, Nambu A, Arae K, Shimura E, Shibui A, Yamaguchi S, Suzukawa K, Nakanishi W, Oboki K, Kajiwara N, Ohno T, Ishii A, Korner H, Cua D, Suto H, Yoshimoto T, Iwakura Y, Yamasoba T, Ohta K, Sudo K, Saito H, Okumura K, Broide D, Matsumoto K, Nakae S
    J Immunol, 2012;189(7):3641-52.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  44. Regulation of innate CD8+ T-cell activation mediated by cytokines.
    Proc Natl Acad Sci U S A, 2012;109(25):9971-6.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  45. Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts.
    Authors: Asquith KL, Horvat JC, Kaiko GE
    PLoS Pathog., 2011;7(5):e1001339.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  46. IL-13 induces skin fibrosis in atopic dermatitis by thymic stromal lymphopoietin.
    Authors: Oh MH, Oh SY, Yu J
    J. Immunol., 2011;186(12):7232-42.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  47. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus.
    Authors: Monticelli LA, Sonnenberg GF, Abt MC
    Nat. Immunol., 2011;12(11):1045-54.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  48. IL-22 Is Produced by Innate Lymphoid Cells and Limits Inflammation in Allergic Airway Disease.
    Authors: Taube C, Tertilt C, Gyulveszi G, Dehzad N, Kreymborg K, Schneeweiss K, Michel E, Reuter S, Renauld JC, Arnold-Schild D, Schild H, Buhl R, Becher B
    PLoS ONE, 2011;6(7):e21799.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  49. Critical role of IL-25 in nematode infection-induced alterations in intestinal function.
    Authors: Zhao A, Urban JF, Sun R
    J. Immunol., 2010;185(0):6921-9.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  50. Periostin regulates goblet cell metaplasia in a model of allergic airway inflammation.
    Authors: Sehra S, Yao W, Nguyen ET, Ahyi AN, Tuana FM, Ahlfeld SK, Snider P, Tepper RS, Petrache I, Conway SJ, Kaplan MH
    J. Immunol., 2010;186(8):4959-66.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  51. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development.
    Authors: Mosconi E, Rekima A, Seitz-Polski B
    Mucosal Immunol, 2010;3(5):461-74.
    Species: N/A
    Sample Types: N/A
    Applications: ELISA (Standard)
  52. Chlamydial respiratory infection during allergen sensitization drives neutrophilic allergic airways disease.
    Authors: Horvat JC, Starkey MR, Kim RY, Beagley KW, Preston JA, Gibson PG, Foster PS, Hansbro PM
    J. Immunol., 2010;184(8):4159-69.
    Species: N/A
    Sample Types: N/A
    Applications: ELISA (Standard)
  53. Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus.
    Authors: Kayamuro H, Yoshioka Y, Abe Y, Arita S, Katayama K, Nomura T, Yoshikawa T, Kubota-Koketsu R, Ikuta K, Okamoto S, Mori Y, Kunisawa J, Kiyono H, Itoh N, Nagano K, Kamada H, Tsutsumi Y, Tsunoda S
    J. Virol., 2010;84(24):12703-12.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  54. Thymic stromal lymphopoietin is a critical mediator of IL-13-driven allergic inflammation.
    Authors: Miyata M, Nakamura Y, Shimokawa N, Ohnuma Y, Katoh R, Matsuoka S, Okumura K, Ogawa H, Masuyama K, Nakao A
    Eur. J. Immunol., 2009;39(11):3078-83.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  55. IL-13 receptor alpha2 regulates the immune and functional response to Nippostrongylus brasiliensis infection.
    Authors: Morimoto M, Zhao A, Sun R, Stiltz J, Madden KB, Mentink-Kane M, Ramalingam T, Wynn TA, Urban JF, Shea-Donohue T
    J. Immunol., 2009;183(3):1934-9.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  56. IL-6 is required for airway mucus production induced by inhaled fungal allergens.
    Authors: Neveu WA, Allard JB, Dienz O, Wargo MJ, Ciliberto G, Whittaker LA, Rincon M
    J. Immunol., 2009;183(3):1732-8.
    Species: N/A
    Sample Types: N/A
    Applications: ELISA (Standard)
  57. Development of an in vitro potency bioassay for therapeutic IL-13 antagonists: the A-549 cell bioassay.
    Authors: Miller R, Sadhukhan R, Wu C
    J. Immunol. Methods, 2008;334(1):134-41.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  58. Induction of IL-33 expression and activity in central nervous system glia.
    Authors: Hudson CA, Christophi GP, Gruber RC, Wilmore JR, Lawrence DA, Massa PT
    J. Leukoc. Biol., 2008;84(3):631-43.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  59. The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development.
    Authors: Khaled WT, Read EK, Nicholson SE, Baxter FO, Brennan AJ, Came PJ, Sprigg N, McKenzie AN, Watson CJ
    Development, 2007;134(15):2739-50.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  60. Severe sepsis exacerbates cell-mediated immunity in the lung due to an altered dendritic cell cytokine profile.
    Authors: Wen H, Hogaboam CM, Gauldie J, Kunkel SL
    Am. J. Pathol., 2006;168(6):1940-50.
    Species: N/A
    Sample Types: N/A
    Applications: ELISA (Standard)
  61. Obligatory role for interleukin-13 in obstructive lesion development in airway allografts.
    Authors: Lama VN, Harada H, Badri LN, Flint A, Hogaboam CM, McKenzie A, Martinez FJ, Toews GB, Moore BB, Pinsky DJ
    Am. J. Pathol., 2006;169(1):47-60.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  62. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus.
    Authors: Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C, Streib JE, Leung DY
    Immunity, 2006;24(3):341-8.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  63. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines.
    Authors: Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA
    Immunity, 2005;23(5):479-90.
    Species: N/A
    Sample Types: N/A
    Applications: ELISA (Standard)
  64. Impact of interleukin-13 responsiveness on the synthetic and proliferative properties of Th1- and Th2-type pulmonary granuloma fibroblasts.
    Authors: Jakubzick C, Choi ES, Kunkel SL, Joshi BH, Puri RK, Hogaboam CM
    Am. J. Pathol., 2003;162(5):1475-86.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  65. IL-13 is necessary, not simply sufficient, for epicutaneously induced Th2 responses to soluble protein antigen.
    Authors: Herrick CA, Xu L, McKenzie AN, Tigelaar RE, Bottomly K
    J. Immunol., 2003;170(5):2488-95.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  66. P-selectin mediates IL-13-induced eosinophil transmigration but not eotaxin generation in vivo: a comparative study with IL-4-elicited responses.
    Authors: Larbi KY, Dangerfield JP, Culley FJ, Marshall D, Haskard DO, Jose PJ, Williams TJ, Nourshargh S
    J. Leukoc. Biol., 2003;73(1):65-73.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  67. Dual roles of IL-4 in lung injury and fibrosis.
    Authors: Huaux F, Liu T, McGarry B, Ullenbruch M, Phan SH
    J. Immunol., 2003;170(4):2083-92.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  68. IFN-gamma, but not Fas, mediates reduction of allergen-induced mucous cell metaplasia by inducing apoptosis.
    Authors: Shi ZO, Fischer MJ, De Sanctis GT, Schuyler MR, Tesfaigzi Y
    J. Immunol., 2002;168(9):4764-71.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  69. IL-13-induced Clara cell secretory protein expression in airway epithelium: role of EGFR signaling pathway.
    Authors: Kim S, Shim JJ, Burgel PR, Ueki IF, Dao-Pick T, Tam DC, Nadel JA
    Am. J. Physiol. Lung Cell Mol. Physiol., 2002;283(1):L67-75.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo

FAQs

No product specific FAQs exist for this product, however you may

View all Proteins and Enzyme FAQs

Reviews for Recombinant Mouse IL-13 Protein

Average Rating: 4.7 (Based on 3 Reviews)

5 Star
66.67%
4 Star
33.33%
3 Star
0%
2 Star
0%
1 Star
0%

Have you used Recombinant Mouse IL-13 Protein?

Submit a review and receive an Amazon gift card.

$25/€18/£15/$25CAN/¥75 Yuan/¥1250 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review

Filter by:


Recombinant Mouse IL-13 Protein
By Anonymous on 10/23/2020
Application: Stem/Immune cell maintenance or differentiation

Recombinant Mouse IL-13 Protein
By Anonymous on 12/18/2019
Application: In vivo study

mIL-13 induces CCL11 expression


Recombinant Mouse IL-13 Protein
By Anonymous on 12/10/2019
Application: In vivo study
Reason for Rating: works well in mouse model