Cripto is the founding member of the epidermal growth factor-CriptoFRL1Cryptic (EGF-CFC) family of signaling proteins that function in cancer and various developmental processes. These developmental processes include: formation of the germ layers and dorsal organizer, specification of anterior-posterior and left-right axes, and differentiation of heart muscle (1, 2). Other members of the EGF-CFC family include Cryptic, Xenopus FRL-1 and zebrafish OEP (one-eyed pinhead). Overall sequence identity between members of the family is low, but they do share several common domains: a variant EGF-like motif, a novel conserved
cysteine-rich domain (called CFC domain), and a C-terminal hydrophobic region. Most EGF-CFC members have a glycosyl-phosphatidylinositol (GPI) anchoring site at the C-terminus and exist as extracellular membrane-anchored proteins. However, naturally-occurring soluble isoforms also exist. Human Cripto shares 66% and 28% amino acid identity with mouse Cripto and zebrafish OEP, respectively (2). Despite weak conservation in amino acid identity, EGF-CFC family members appear to function similarly in assays for phenotypic rescue of zebrafish oep mutants (2). Both secreted and membrane bound forms of Cripto demonstrate biological activity (3). Cripto, also known as CFC-2 or TDGF-1 (teratocarcinoma-derived growth factor), was originally isolated from an undifferentiated human teratocarcinoma cell line as a potential oncogene. It is overexpressed in many types of cancers and acts as a growth factor for tumors (4). Genetic evidence from mice and zebrafish points to a role for Cripto as an essential cofactor in Nodal signaling. Cripto and OEP mutants display defects in mesoderm induction and heart morphogenesis, similar to phenotypes seen in Nodal mutants (2).Cripto acts as a cofactor for Nodal by recruiting the Activin type I Receptor, ALK-4, leading to an
Act RIIB-ALK4-Cripto-Nodal complex for signaling (1, 3). Cripto also forms a complex with activin and Act RIIs to block activin signaling (5). Studies have shown that other TGF-beta superfamily members such as Vg1 and GDF-1 also require EGF-CFC cofactors (6). Cripto can also activate mitogen-activated protein kinase (MAPK) and Akt pathways independently of Nodal by directly binding to a membrane-associated heparan sulfate proteoglycan, glypican-1 (7).
Human Cripto 1 PE‑conjugated Antibody
R&D Systems | Catalog # FAB2772P
Key Product Details
Species Reactivity
Validated:
Cited:
Applications
Validated:
Cited:
Label
Antibody Source
Product Specifications
Immunogen
Arg38-Tyr188
Accession # P13385
Specificity
Clonality
Host
Isotype
Scientific Data Images for Human Cripto 1 PE‑conjugated Antibody
Detection of Cripto in Human PBMCs by Flow Cytometry.
Human peripheral blood mononuclear cells (PBMCs) were stained with Mouse Anti-Human Cripto 1 PE-conjugated Monoclonal Antibody (Catalog # FAB2772P, filled histogram) or isotype control antibody (Catalog # IC002P, open histogram). View our protocol for Staining Membrane-associated Proteins.
Applications for Human Cripto 1 PE‑conjugated Antibody
Flow Cytometry
Sample: Human peripheral blood mononuclear cells (PBMCs)
Spectra Viewer
Plan Your Experiments
Use our spectra viewer to interactively plan your experiments, assessing multiplexing options. View the excitation and emission spectra for our fluorescent dye range and other commonly used dyes.
Spectra ViewerFlow Cytometry Panel Builder
Bio-Techne Knows Flow Cytometry
Save time and reduce costly mistakes by quickly finding compatible reagents using the Panel Builder Tool.
Advanced Features
- Spectra Viewer - Custom analysis of spectra from multiple fluorochromes
- Spillover Popups - Visualize the spectra of individual fluorochromes
- Antigen Density Selector - Match fluorochrome brightness with antigen density
Formulation, Preparation, and Storage
Purification
Formulation
Shipping
Stability & Storage
Background: Cripto
References
- Rosa, F.M. (2002) Science’s STKE http://stke.sciencemag.org/.
- Shen, M. and A. Schier (2000) Trends Genet. 16:303.
- Yan, Y-T. et al. (2002) Mol. Cell Biol. 22:4439.
- Salomon, D. et al. (2000) Endocrine-Rel. Cancer 7:199.
- Gray, P.C. et al. (2003) Proc. Natl. Acad. Sci. USA 100:5193.
- Cheng, S. et al. (2003) Genes & Dev. 17:31.
- Bianco, C. et al. (2003) Cancer Research 63:1192.
Long Name
Alternate Names
Gene Symbol
UniProt
Additional Cripto Products
Product Documents for Human Cripto 1 PE‑conjugated Antibody
Product Specific Notices for Human Cripto 1 PE‑conjugated Antibody
For research use only
Related Research Areas
Citations for Human Cripto 1 PE‑conjugated Antibody
Customer Reviews for Human Cripto 1 PE‑conjugated Antibody
There are currently no reviews for this product. Be the first to review Human Cripto 1 PE‑conjugated Antibody and earn rewards!
Have you used Human Cripto 1 PE‑conjugated Antibody?
Submit a review and receive an Amazon gift card!
$25/€18/£15/$25CAN/¥2500 Yen for a review with an image
$10/€7/£6/$10CAN/¥1110 Yen for a review without an image
Submit a review
Protocols
Find general support by application which include: protocols, troubleshooting, illustrated assays, videos and webinars.
- 7-Amino Actinomycin D (7-AAD) Cell Viability Flow Cytometry Protocol
- Extracellular Membrane Flow Cytometry Protocol
- Flow Cytometry Protocol for Cell Surface Markers
- Flow Cytometry Protocol for Staining Membrane Associated Proteins
- Flow Cytometry Staining Protocols
- Flow Cytometry Troubleshooting Guide
- Intracellular Flow Cytometry Protocol Using Alcohol (Methanol)
- Intracellular Flow Cytometry Protocol Using Detergents
- Intracellular Nuclear Staining Flow Cytometry Protocol Using Detergents
- Intracellular Staining Flow Cytometry Protocol Using Alcohol Permeabilization
- Intracellular Staining Flow Cytometry Protocol Using Detergents to Permeabilize Cells
- Propidium Iodide Cell Viability Flow Cytometry Protocol
- Protocol for the Characterization of Human Th22 Cells
- Protocol for the Characterization of Human Th9 Cells
- Protocol: Annexin V and PI Staining by Flow Cytometry
- Protocol: Annexin V and PI Staining for Apoptosis by Flow Cytometry
- Troubleshooting Guide: Fluorokine Flow Cytometry Kits
- View all Protocols, Troubleshooting, Illustrated assays and Webinars