Ubiquitin-like Modifiers (UBLs) and Regulators

Although ubiquitin is the most well understood post-translation modifier, there is a growing family of ubiquitin-like proteins (UBLs) that modify cellular targets in a pathway that is parallel to but distinct from that of ubiquitin. These alternative modifiers include: SUMO (Sentrin, Smt3 in yeast), NEDD8 (Rub1 in yeast), ISG15 (UCRP), APG8, APG12, FAT10, Ufm1, URM1 and Hub1.

These related molecules have novel functions and influence diverse biological processes. There is also cross-regulation between the various conjugation pathways since some proteins can become modified by more than one UBL, and sometimes even at the same lysine residue. For instance, SUMO modification often acts antagonistically to that of ubiquitination and serves to stabilize protein substrates. Proteins conjugated to UBLs are typically not targeted for degradation by the proteasome, but rather function in diverse regulatory activities. Attachment of UBLs might alter substrate conformation, affect the affinity for ligands or other interacting molecules, alter substrate localization and influence protein stability.

UBLs are structurally similar to ubiquitin and are processed, activated, conjugated and released from conjugates by enzymatic steps that are similar to the corresponding mechanisms for ubiquitin. UBLs are also translated with C-terminal extensions that are processed to expose the invariant C-terminal LRGG. These modifiers have their own specific E1 (activating), E2 (conjugating) and E3 (ligating) enzymes that conjugate the UBLs to intracellular targets. These conjugates can be reversed by UBL-specific isopeptidases that have similar mechanisms to that of the deubiquitinating enzymes.