Quick Order  

Welcome to Bio-Techne Quick Order!

Please enter a catalog number:
 
Enter CSV values, as SKU, QUANTITY.
 
View Your Cart
Simplified Shipping

We believe shipping should be simple. We charge a flat rate that depends on your currency and location.
  • No hidden charges
  • No additional charges for dry ice
  • No additional charges for multiple shipments
Choose a shipping destination
Albania

Algeria

Andorra

Angola

Antigua and Barbuda

Argentina

Armenia

Aruba

Australia

Austria

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bolivia

Bosnia and Herzegovina

Botswana

Brazil

Brunei

Bulgaria

Burkina Faso

Burundi

Cambodia

Cameroon

Canada

Cayman Islands

Central African Republic

Chad

Chile

China

Colombia

Costa Rica

Ivory Coast

Croatia

Cyprus

Czech Republic

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Ethiopia

Falkland Islands

Fiji

Finland

France

French Polynesia

Gabon

Gambia

Georgia

Germany

Ghana

Gibraltar

Greece

Grenada

Guadeloupe

Guam

Guatemala

Guinea

Guinea-Bissau

Guyana

Haiti

Vatican

Honduras

Hong Kong S.A.R., China

Hungary

Iceland

India

Indonesia

Iraq

Ireland

Israel

Italy

Jamaica

Japan

Jordan

Kazakhstan

Kenya

South Korea

Kuwait

Kyrgyzstan

Latvia

Lebanon

Lesotho

Liberia

Liechtenstein

Lithuania

Luxembourg

Macedonia

Madagascar

Malawi

Malaysia

Mali

Malta

Marshall Islands

Mauritania

Mexico

Moldova

Monaco

Mongolia

Montenegro

Morocco

Mozambique

Myanmar

Namibia

Nepal

Netherlands

Netherlands Antilles

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Poland

Portugal

Puerto Rico

Qatar

Romania

Russia

Rwanda

Saint Kitts and Nevis

Saint Lucia

Saint Martin (French part)

Samoa

Saudi Arabia

Senegal

Serbia

Sierra Leone

Singapore

Slovakia

Slovenia

Solomon Islands

South Africa

Spain

Sri Lanka

Suriname

Swaziland

Sweden

Switzerland

Taiwan

Tanzania

Thailand

Togo

Trinidad and Tobago

Tunisia

Turkey

Uganda

Ukraine

United Arab Emirates

United Kingdom

United States

Uruguay

Uzbekistan

Venezuela

Vietnam

Yemen

Zambia

Zimbabwe

 

OR

IL-27: Balancing T Cell-Mediated Immune Responses

Interleukin-27 (IL-27) is a member of the IL-12 family of heterodimeric cytokines that also includes IL-12, IL-23, and IL-35. Each of these cytokines consists of an alpha (p19, p28, or p35) and a beta (p40 or EBI3) chain and signals through receptors that are highly expressed on T cells and/or natural killer cells. IL-27 is comprised of p28, a polypeptide related to IL-12 p35, and EBI3 (Epstein-Barr virus-induced gene 3), an IL-12/IL-23 p40-related protein.1 It binds to a heterodimeric receptor complex formed by TCCR/WSX-1 and gp130, a common receptor subunit shared by IL-6 family cytokines.2 Upon secretion by activated antigen-presenting cells, IL-27 promotes the expansion of naïve CD4+ T cells, and drives Th1 differentiation by inducing the expression of the Th1-specific transcription factor, T-bet.2, 3, 4 At the same time, IL-27 in the absence of IL-4 inhibits the expression of the Th2-specific transcription factor, GATA-3, and suppresses Th2 cytokine production.3, 5 Despite its role in promoting Th1 differentiation, studies performed using TCCR/WSX-1-deficient mice infected with various pathogens suggest that IL-27 signaling is also required to prevent excessive T cell activity and limit pro-inflammatory cytokine production.6, 7 The importance of the anti-inflammatory properties of IL-27 was highlighted in 2006 when Batten et al. and Stumhofer et al. demonstrated that IL-27 could suppress the development of IL-17-producing Th17 cells.8, 9 Together these studies indicated that IL-27 may be important for inhibiting the pathogenesis of Th17-related inflammatory/autoimmune diseases.

IL-27 Has Both Pro- and Anti-Inflammatory Effects. IL-27 is a heterodimeric cytokine secreted by activated antigen-presenting cells.
View Larger Image
IL-27 Has Both Pro- and Anti-Inflammatory Effects. IL-27 is a heterodimeric cytokine secreted by activated antigen-presenting cells. It drives inflammation by promoting the early commitment of naïve CD4+ T cells to a Th1-specific lineage. In contrast, it inhibits inflammation by suppressing Th17 differentiation and inducing a T regulatory (Tr1)-like activity in differentiated Th1 and Th2 effector cells. IL-10 secretion by these cells has anti-inflammatory, immunosuppressive effects that may serve as a negative feedback mechanism to balance IL-27-induced Th1 differentiation. Recent evidence suggests that the p28 subunit of IL-27 may form a second protein complex with cytokine-like factor 1 (CLF), which is also involved in regulating the balance between pro- and anti-inflammatory T cell responses.

Recent reports have provided more details on the mechanisms by which IL-27 negatively regulates Th17 differentiation and inflammation. Using human or mouse naïve CD4+ T cells cultured under Th17-inducing conditions, IL-27 was shown to inhibit expression of the Th17-specific transcription factor, RORgamma t, and subsequent secretion of IL-17A.10 Consistent with published results, IL-27 also induced IL-10 production, suggesting a second mechanism by which it may regulate the pathogenicity of Th17 cells.10, 11, 12 To test the in vivo function of IL-27, mice lacking the p28 subunit of IL-27 were generated and immunized with myelin oligodendrocyte glycoprotein to induce experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis.10 Similar to TCCR/WSX-1-deficient mice, IL-27 p28-deficient mice were more susceptible to EAE and developed a significantly more severe form of the disease. The increase in disease severity was associated with elevated expression of Th17-related molecules in the central nervous system, and reduced late phase expression of IL-10.

These results were confirmed in part by Murugaiyan et al., who also found that IL-27 could induce the production of IL-10 and IFN-gamma, and inhibit IL-17 secretion by anti-CD3, anti-CD28-activated human CD4+ T cells.13 This was accompanied by reduced expression of GATA-3 and RORC. Addition of IL-2 to activated T cells significantly enhanced IL-27-induced IL-10 secretion, while a neutralizing antibody to IL-2 inhibited IL-10 production. These characteristics were reminiscent of the phenotype of Tr1 cells, a subset of CD4+FoxP3+/– IL-10+ T regulatory (Treg) cells that expand in the presence of IL-2, suggesting that IL-27 may in part confer a Tr1-like activity on CD4+ T cells.14 Supporting this hypothesis, the supernatants from activated, IL-27-treated T cells suppressed the proliferation of freshly purified CD4+ T cells in an IL-10-dependent manner.13 Collectively, these studies highlight the pivotal role that IL-27 plays in regulating the delicate balance between pro-inflammatory Th1/Th17 cells and anti-inflammatory IL-10-producing T cell populations.

Crabe et al. have also recently described another secreted complex that consists of the p28 subunit of IL-27 and cytokine-like factor 1 (CLF).15 Like IL-27, p28/CLF is secreted by activated dendritic cells, but it requires TCCR/WSX-1, gp130, and IL-6 R alpha for signaling. In contrast to IL-27, p28/CLF not only inhibited the proliferation of mouse naïve CD4+ T cells, but it also induced the expression of IL-17 in the presence of TGF-beta. The level of IL-17 expression was comparable to that induced by TGF-beta and IL-6, when followed by PMA/ionomycin re-stimulation, demonstrating that p28/CLF could substitute for IL-6 in promoting mouse Th17 differentiation. IL-27 suppressed IL-17 expression in both circumstances, suggesting that it acts as an antagonist of both p28/CLF and IL-6 under these conditions. Further studies are necessary to determine the in vivo significance of p28/CLF, and whether this complex is relevant in humans. However, initial in vitro characterization indicates that it too may be involved in the regulation of inflammation and autoimmune diseases.

References

  1. Pflanz, S. et al. (2002) Immunity 16:779.
  2. Pflanz, S. et al. (2004) J. Immunol. 172:2225.
  3. Lucas, S. et al. (2003) Proc. Natl. Acad. Sci. USA 100:15047.
  4. Takeda, A. et al. (2003) J. Immunol. 170:4886.Cites the use of R&D Systems Products
  5. Artis, D. et al. (2004) J. Immunol. 173:5626.
  6. Villarino, A. et al. (2003) Immunity 19:645.Cites the use of R&D Systems Products
  7. Hamano, S. et al. (2003) Immunity 19:657.
  8. Batten, M. et al. (2006) Nat. Immunol. 7:929.Cites the use of R&D Systems Products
  9. Stumhofer, J.S. et al. (2006) Nat. Immunol. 7:937.Cites the use of R&D Systems Products
  10. Diveu, C. et al. (2009) J. Immunol. 182:5748.Cites the use of R&D Systems Products
  11. Stumhofer, J.S. et al. (2007) Nat. Immunol. 8:1363.Cites the use of R&D Systems Products
  12. Fitzgerald, D.C. et al. (2007) Nat. Immunol. 8:1372.Cites the use of R&D Systems Products
  13. Murugaiyan, G. et al. (2009) J. Immunol. 183:2435.Cites the use of R&D Systems Products
  14. Roncarolo, M.G. et al. (2006) Immunol. Rev. 212:28.
  15. Crabe, S. et al. (2009) J. Immunol. 183:7692.Cites the use of R&D Systems Products

Cites the use of R&D Systems Products This symbol denotes references that cite the use of R&D Systems products.