Quick Order  

Welcome to Bio-Techne Quick Order!

Please enter a catalog number:
 
Enter CSV values, as SKU, QUANTITY.
 
View Your Cart

Simplified Shipping


We believe shipping should be simple. We charge a flat rate that depends on your currency and location.
  • No hidden charges
  • No additional charges for dry ice
  • No additional charges for multiple shipments
Choose a shipping destination
Albania

Algeria

Andorra

Angola

Antigua and Barbuda

Argentina

Armenia

Aruba

Australia

Austria

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bolivia

Bosnia and Herzegovina

Botswana

Brazil

Brunei

Bulgaria

Burkina Faso

Burundi

Cambodia

Cameroon

Canada

Cayman Islands

Central African Republic

Chad

Chile

China

Colombia

Costa Rica

Ivory Coast

Croatia

Cyprus

Czech Republic

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Ethiopia

Falkland Islands

Fiji

Finland

France

French Polynesia

Gabon

Gambia

Georgia

Germany

Ghana

Gibraltar

Greece

Grenada

Guadeloupe

Guam

Guatemala

Guinea

Guinea-Bissau

Guyana

Haiti

Vatican

Honduras

Hong Kong S.A.R., China

Hungary

Iceland

India

Indonesia

Iraq

Ireland

Israel

Italy

Jamaica

Japan

Jordan

Kazakhstan

Kenya

South Korea

Kuwait

Kyrgyzstan

Latvia

Lebanon

Lesotho

Liberia

Liechtenstein

Lithuania

Luxembourg

Macedonia

Madagascar

Malawi

Malaysia

Mali

Malta

Marshall Islands

Mauritania

Mexico

Moldova

Monaco

Mongolia

Montenegro

Morocco

Mozambique

Myanmar

Namibia

Nepal

Netherlands

Netherlands Antilles

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Poland

Portugal

Puerto Rico

Qatar

Romania

Russia

Rwanda

Saint Kitts and Nevis

Saint Lucia

Saint Martin (French part)

Samoa

Saudi Arabia

Senegal

Serbia

Sierra Leone

Singapore

Slovakia

Slovenia

Solomon Islands

South Africa

Spain

Sri Lanka

Suriname

Swaziland

Sweden

Switzerland

Taiwan

Tanzania

Thailand

Togo

Trinidad and Tobago

Tunisia

Turkey

Uganda

Ukraine

United Arab Emirates

United Kingdom

United States

Uruguay

Uzbekistan

Venezuela

Vietnam

Yemen

Zambia

Zimbabwe

 

OR

Need help at the cell surface? Ask your local sheddase.

Sheddases cleave membrane proteins at the cell surface, releasing soluble ectodomains with altered location and function. Some sheddases are membrane proteins themselves that belong to metalloprotease (ADAM and MMP) or aspartic protease (BACE) families. Their activity can be constitutive or regulated through various processes such as PKC activation, Ca2+ influx, and lipid rafts.1-3

A single sheddase may cleave a variety of substrates. A classic example in this category, ADAM17, was initially identified as TNF-alpha-converting Enzyme (TACE), and is known to shed a variety of growth factors, receptors, and adhesion molecules.1,4 This suggests that overall conformations of the substrates are more important than primary amino acid sequences in determining the accessibility for cleavage by sheddases.

Multiple sheddases can cleave the same substrate. Under certain circumstances this may result in different consequences. ADAM17, ADAM10, and MMP-14/MT1-MMP are all known to shed CD44, an adhesion molecule that interacts with hyaluronic acid in the ECM.2 Additionally, amyloid precursor protein (APP) processing by alpha, or by beta- and gamma-secretases has differential effects on the production of alpha beta peptide, a major plaque component found in brains of Alzheimer’s disease patients. Cleavage of APP by beta-secretase (BACE-1 and -2) creates a substrate for gamma-secretase, resulting in alpha beta peptide production. In contrast, alpha-secretase (ADAM10, 17 and 9) cleavage between the beta- and gamma-secretase sites prevents alpha beta peptide production.5 Juxtamembrane cleavage that creates a substrate for further processing that results in the release of a cytoplasmic domain has been termed regulated intramembrane proteolysis (RIP). Notch processing by ADAM10 RIP liberates the Notch intracellular domain, allowing it to translocate to the nucleus and activate the transcription of target genes.6

Figure 1
Figure 1. Diagram illustrating how sheddases alter ligand (left) or receptor (right) location and function.

Sheddases can act as “thermostats” that either up- or down-regulate the activity of their substrates. Using a transmembrane ligand/receptor as an example, shedding may remove/terminate the molecule locally, yield a decoy that sequesters soluble counterparts, or transduce a signal in conjunction with RIP as described above (Figure 1). The SARS-CoV receptor, also known as ACE-2, is shed by ADAM17 and the soluble ACE-2 is able to block cell binding by SARS-CoV spike protein.7 Similarly, several soluble cytokine receptors, such as sIL-15 R,8 compete with membrane-bound receptors, while others including sIL-6 R,9 remain agonistic when cytokine is bound.

Sheddases can also act as “travel agents,” regulating cell adhesion and migration. For example, CD44-dependent cell migration is proposed to occur by ADAM17-mediated CD44 ectodomain shedding at the leading edge of the cell. Extension of the lamellipod triggers Ca2+ influx, and CD44 shedding by Ca2+ -activated ADAM10 at the trailing edge facilitates detachment. RIP creates a cytoplasmic CD44 fragment that promotes new CD44 synthesis. This link between CD44 proteolysis and new transcription results in rapid turnover of CD44, facilitating efficient cell migration.2 Similar models also fit with currently available data for L-selectin,4 E-Cadherin/beta-catenin,10 NCAM-L1,11 and other adhesion molecules. Soluble adhesion ectodomains can be functional; sL-selectin directs migration of activated leukocytes,12 while sE-cadherin causes scattering of epithelial cells and induction of invasion.10 Association of transmembrane Ephrins and their Eph receptors on opposing cells often results in cell-cell repulsion. New data on ADAM10 shedding of Ephrin/Eph complex has explained this paradox.13 Associated with Eph on one cell surface, ADAM10 cleaves Ephrin within the Ephrin/Eph complex formed between two cell surfaces. When ephrin is freed from the opposing cell, the entire Ephrin/Eph complex is endocytosed. This shedding in trans had not been previously shown, but may well be involved in other shedding events.

References

  1. Moss, M. L. & J. W. Bartsch (2004) Biochemistry 43:7227.
  2. Nagano, O. & H. Saya (2004) Cancer Sci. 95:930.
  3. Blobel, C. P. (2005) Nat. Rev. Mol. Cell Biol. 6:32.
  4. Smalley, D. M. & K. Ley (2005) J. Cell Mol. Med. 9:255.
  5. Allinson, T. M. J. et al. (2003) J. Neurosci. Res. 74:342.
  6. Six, E. et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100:7638.
  7. Lambert, D. W. et al. (2005) J. Biol. Chem. 280:30113.
  8. Budagian, V. et al. 2004) J. Biol. Chem. 279:40368.
  9. Marin, V. et al. (2002) Eur. J. Immunol. 32:2965.
  10. Maretzky, T. et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102:9182.
  11. Maretzky, T. et al. (2005) Mol. Cell. Biol. 25:9040.
  12. Venturi, G. M. et al. (2003) Immunity 19:713.
  13. Janes, P. W. et al. (2005) Cell 123:291.