Complement C3 Antibody (11H9) - Azide and BSA Free
Novus Biologicals | Catalog # NBP2-80677
Key Product Details
Validated by
Species Reactivity
Applications
Label
Antibody Source
Format
Product Specifications
Immunogen
Localization
Clonality
Host
Isotype
Theoretical MW
Disclaimer note: The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors.
Description
Scientific Data Images for Complement C3 Antibody (11H9) - Azide and BSA Free
Immunocytochemistry: Complement C3 Antibody (11H9) - Azide and BSA Free [NBP2-80677]
Immunocytochemistry: Complement C3 Antibody (11H9) - Azide and BSA Free [NBP2-80677] - Complement C3 protein in a FFPE tissue section of mouse lymph node using 1:100 dilution of Complement C3 antibody (clone 11H9) NB200-540. This representative photomicrograph shows a membrane-cytoplasmic immunopositivity in non-germinal center cells.Immunohistochemistry: Complement C3 Antibody (11H9) - Azide and BSA Free [NBP2-80677]
Immunohistochemistry: Complement C3 Antibody (11H9) - Azide and BSA Free [NBP2-80677] - Complement C3 protein in a FFPE tissue section of mouse liver using 1:100 dilution of Complement C3 antibody (clone 11H9) NB200-540. Weak but distinct membrane-cytoplasmic immunopositivity was observed in hepatocytes.Flow Cytometry: Complement C3 Antibody (11H9) - Azide and BSA Free [NBP2-80677]
Flow Cytometry: Complement C3 Antibody (11H9) - Azide and BSA Free [NBP2-80677] - Left panel: FMO. Middle panel: No primary antibody control. Right panel: sample. Day 6 murine mammary tumors processed and stained for analysis with flow cytometry. The C3b+ population of CD45+ cells is what the gate in each sample is exhibiting. Image from the standard format of this antibody. Flow cytometry image submitted by a verified customer review.Immunocytochemistry/ Immunofluorescence: Complement C3 Antibody (11H9) - Azide and BSA Free [NBP2-80677]
Immunocytochemistry/Immunofluorescence: Complement C3 Antibody (11H9) - Azide and BSA Free [NBP2-80677] - C3 protein fragments deposited on kidney cells of MPL-lpr mouse. Staining with antibody 11H9. Glomerular staining pattern. Fixation in 4% paraformaldehyde in PBS pH 7.4. Vibratome sections of 4 um. Pretreated with 3% hydrogen peroxide for 20 min to quench endogenous peroxidases. Microwaved in antigen unmasking solution for 2-5 minutes as antigen retrieval. Image from the standard format of this antibody.Applications for Complement C3 Antibody (11H9) - Azide and BSA Free
Flow Cytometry
Immunoassay
Immunocytochemistry/ Immunofluorescence
Immunohistochemistry
Immunohistochemistry-Frozen
Immunohistochemistry-Paraffin
Immunoprecipitation
Flow Cytometry Panel Builder
Bio-Techne Knows Flow Cytometry
Save time and reduce costly mistakes by quickly finding compatible reagents using the Panel Builder Tool.
Advanced Features
- Spectra Viewer - Custom analysis of spectra from multiple fluorochromes
- Spillover Popups - Visualize the spectra of individual fluorochromes
- Antigen Density Selector - Match fluorochrome brightness with antigen density
Formulation, Preparation, and Storage
Purification
Formulation
Format
Preservative
Concentration
Shipping
Stability & Storage
Background: Complement C3
Both elevated levels and reduced levels of Complement C3 has been implicated in diseases pathologies (6). Deficiency in Complement proteins can result in autoimmune disorders including systemic lupus erythematosus, which is more often associated with C1 or C4 deficiency and only rarely with C3 deficiency (6). However, C3 deficiency typically results in increased risk of recurrent bacterial infections and glomerulonephritis, characterized by inflammation of the filtering glomeruli in the kidneys (6). Additionally, elevated levels of C3a and C4a is seen in patients with antiphospholipid antibody syndrome (6). Serum levels of C3 are also higher in rheumatoid arthritis cases (6). The complement system has become a target for drugs and therapeutics aimed at modulating innate immunity (7). For instance, compstatin is a peptide that binds to C3, inhibiting convertase activity and cleavage and can be used to treat diseases associated with uncontrolled C3 activation (7). C3-inhibitors and other complement inhibitors are a promising drug candidate for treatment of many diseases (7).
References
1. Mathern, D. R., & Heeger, P. S. (2015). Molecules Great and Small: The Complement System. Clinical Journal of the American Society of Nephrology: CJASN. https://doi.org/10.2215/CJN.06230614
2. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V., & Roumenina, L. T. (2015). Complement System Part I - Molecular Mechanisms of Activation and Regulation. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2015.00262
3. Ricklin, D., Reis, E. S., Mastellos, D. C., Gros, P., & Lambris, J. D. (2016). Complement component C3 - The "Swiss Army Knife" of innate immunity and host defense. Immunological Reviews. https://doi.org/10.1111/imr.12500
4. Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V., & Roumenina, L. T. (2015). Complement System Part II: Role in Immunity. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2015.00257
5. Sahu, A., & Lambris, J. D. (2001). Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunological Reviews. https://doi.org/10.1034/j.1600-065x.2001.1800103.x
6. Vignesh, P., Rawat, A., Sharma, M., & Singh, S. (2017). Complement in autoimmune diseases. Clinica Chimica Acta; International Journal of Clinical Chemistry. https://doi.org/10.1016/j.cca.2016.12.017
7. Mastellos, D. C., Yancopoulou, D., Kokkinos, P., Huber-Lang, M., Hajishengallis, G., Biglarnia, A. R., Lupu, F., Nilsson, B., Risitano, A. M., Ricklin, D., & Lambris, J. D. (2015). Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention. European Journal of Clinical Investigation. https://doi.org/10.1111/eci.12419
Alternate Names
Gene Symbol
Additional Complement C3 Products
Product Documents for Complement C3 Antibody (11H9) - Azide and BSA Free
Certificate of Analysis
To download a Certificate of Analysis, please enter a lot or batch number in the search box below.
Product Specific Notices for Complement C3 Antibody (11H9) - Azide and BSA Free
This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are guaranteed for 1 year from date of receipt.
Customer Reviews for Complement C3 Antibody (11H9) - Azide and BSA Free
There are currently no reviews for this product. Be the first to review Complement C3 Antibody (11H9) - Azide and BSA Free and earn rewards!
Have you used Complement C3 Antibody (11H9) - Azide and BSA Free?
Submit a review and receive an Amazon gift card!
$25/€18/£15/$25CAN/¥2500 Yen for a review with an image
$10/€7/£6/$10CAN/¥1110 Yen for a review without an image
Submit a review
Protocols
Find general support by application which include: protocols, troubleshooting, illustrated assays, videos and webinars.
- 7-Amino Actinomycin D (7-AAD) Cell Viability Flow Cytometry Protocol
- Antigen Retrieval Protocol (PIER)
- Antigen Retrieval for Frozen Sections Protocol
- Appropriate Fixation of IHC/ICC Samples
- Cellular Response to Hypoxia Protocols
- Chromogenic IHC Staining of Formalin-Fixed Paraffin-Embedded (FFPE) Tissue Protocol
- Chromogenic Immunohistochemistry Staining of Frozen Tissue
- Detection & Visualization of Antibody Binding
- ELISA Sample Preparation & Collection Guide
- ELISA Troubleshooting Guide
- Extracellular Membrane Flow Cytometry Protocol
- Flow Cytometry Protocol for Cell Surface Markers
- Flow Cytometry Protocol for Staining Membrane Associated Proteins
- Flow Cytometry Staining Protocols
- Flow Cytometry Troubleshooting Guide
- Fluorescent IHC Staining of Frozen Tissue Protocol
- Graphic Protocol for Heat-induced Epitope Retrieval
- Graphic Protocol for the Preparation and Fluorescent IHC Staining of Frozen Tissue Sections
- Graphic Protocol for the Preparation and Fluorescent IHC Staining of Paraffin-embedded Tissue Sections
- Graphic Protocol for the Preparation of Gelatin-coated Slides for Histological Tissue Sections
- How to Run an R&D Systems DuoSet ELISA
- How to Run an R&D Systems Quantikine ELISA
- How to Run an R&D Systems Quantikine™ QuicKit™ ELISA
- ICC Cell Smear Protocol for Suspension Cells
- ICC Immunocytochemistry Protocol Videos
- ICC for Adherent Cells
- IHC Sample Preparation (Frozen sections vs Paraffin)
- Immunocytochemistry (ICC) Protocol
- Immunocytochemistry Troubleshooting
- Immunofluorescence of Organoids Embedded in Cultrex Basement Membrane Extract
- Immunofluorescent IHC Staining of Formalin-Fixed Paraffin-Embedded (FFPE) Tissue Protocol
- Immunohistochemistry (IHC) and Immunocytochemistry (ICC) Protocols
- Immunohistochemistry Frozen Troubleshooting
- Immunohistochemistry Paraffin Troubleshooting
- Immunoprecipitation Protocol
- Intracellular Flow Cytometry Protocol Using Alcohol (Methanol)
- Intracellular Flow Cytometry Protocol Using Detergents
- Intracellular Nuclear Staining Flow Cytometry Protocol Using Detergents
- Intracellular Staining Flow Cytometry Protocol Using Alcohol Permeabilization
- Intracellular Staining Flow Cytometry Protocol Using Detergents to Permeabilize Cells
- Preparing Samples for IHC/ICC Experiments
- Preventing Non-Specific Staining (Non-Specific Binding)
- Primary Antibody Selection & Optimization
- Propidium Iodide Cell Viability Flow Cytometry Protocol
- Protocol for Heat-Induced Epitope Retrieval (HIER)
- Protocol for Making a 4% Formaldehyde Solution in PBS
- Protocol for VisUCyte™ HRP Polymer Detection Reagent
- Protocol for the Characterization of Human Th22 Cells
- Protocol for the Characterization of Human Th9 Cells
- Protocol for the Fluorescent ICC Staining of Cell Smears - Graphic
- Protocol for the Fluorescent ICC Staining of Cultured Cells on Coverslips - Graphic
- Protocol for the Preparation & Fixation of Cells on Coverslips
- Protocol for the Preparation and Chromogenic IHC Staining of Frozen Tissue Sections
- Protocol for the Preparation and Chromogenic IHC Staining of Frozen Tissue Sections - Graphic
- Protocol for the Preparation and Chromogenic IHC Staining of Paraffin-embedded Tissue Sections
- Protocol for the Preparation and Chromogenic IHC Staining of Paraffin-embedded Tissue Sections - Graphic
- Protocol for the Preparation and Fluorescent ICC Staining of Cells on Coverslips
- Protocol for the Preparation and Fluorescent ICC Staining of Non-adherent Cells
- Protocol for the Preparation and Fluorescent ICC Staining of Stem Cells on Coverslips
- Protocol for the Preparation and Fluorescent IHC Staining of Frozen Tissue Sections
- Protocol for the Preparation and Fluorescent IHC Staining of Paraffin-embedded Tissue Sections
- Protocol for the Preparation of Gelatin-coated Slides for Histological Tissue Sections
- Protocol for the Preparation of a Cell Smear for Non-adherent Cell ICC - Graphic
- Protocol: Annexin V and PI Staining by Flow Cytometry
- Protocol: Annexin V and PI Staining for Apoptosis by Flow Cytometry
- Quantikine HS ELISA Kit Assay Principle, Alkaline Phosphatase
- Quantikine HS ELISA Kit Principle, Streptavidin-HRP Polymer
- Sandwich ELISA (Colorimetric) – Biotin/Streptavidin Detection Protocol
- Sandwich ELISA (Colorimetric) – Direct Detection Protocol
- TUNEL and Active Caspase-3 Detection by IHC/ICC Protocol
- The Importance of IHC/ICC Controls
- Troubleshooting Guide: ELISA
- Troubleshooting Guide: Fluorokine Flow Cytometry Kits
- Troubleshooting Guide: Immunohistochemistry
- View all Protocols, Troubleshooting, Illustrated assays and Webinars
FAQs for Complement C3 Antibody (11H9) - Azide and BSA Free
-
Q: I am trying to establish a method to measure mice C3 levels by nephelometry. I would be most grateful if you could provide me with some help, regarding the choice of the Ab. I totally understand that since such a method has never been tried, I do not expect any guaranties.
A: We have never performed nephelometry in our lab, and do not have a protocol or advice to provide about this application. However, it seems to me that you should choose an antibody that is capable of recognizing its target in its folded conformation. Therefore, I would suggest trying an antibody that has been validated for ICC or IHC.