Quick Order  

Welcome to Bio-Techne Quick Order!

Please enter a catalog number:
 
Enter CSV values, as SKU, QUANTITY.
 
View Your Cart

Simplified Shipping


We believe shipping should be simple. We charge a flat rate that depends on your currency and location.
  • No hidden charges
  • No additional charges for dry ice
  • No additional charges for multiple shipments
Choose a shipping destination
Albania

Algeria

Andorra

Angola

Antigua and Barbuda

Argentina

Armenia

Aruba

Australia

Austria

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bolivia

Bosnia and Herzegovina

Botswana

Brazil

Brunei

Bulgaria

Burkina Faso

Burundi

Cambodia

Cameroon

Canada

Cayman Islands

Central African Republic

Chad

Chile

China

Colombia

Costa Rica

Ivory Coast

Croatia

Cyprus

Czech Republic

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Ethiopia

Falkland Islands

Fiji

Finland

France

French Polynesia

Gabon

Gambia

Georgia

Germany

Ghana

Gibraltar

Greece

Grenada

Guadeloupe

Guam

Guatemala

Guinea

Guinea-Bissau

Guyana

Haiti

Vatican

Honduras

Hong Kong S.A.R., China

Hungary

Iceland

India

Indonesia

Iraq

Ireland

Israel

Italy

Jamaica

Japan

Jordan

Kazakhstan

Kenya

South Korea

Kuwait

Kyrgyzstan

Latvia

Lebanon

Lesotho

Liberia

Liechtenstein

Lithuania

Luxembourg

Macedonia

Madagascar

Malawi

Malaysia

Mali

Malta

Marshall Islands

Mauritania

Mexico

Moldova

Monaco

Mongolia

Montenegro

Morocco

Mozambique

Myanmar

Namibia

Nepal

Netherlands

Netherlands Antilles

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Northern Mariana Islands

Norway

Oman

Pakistan

Palau

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Poland

Portugal

Puerto Rico

Qatar

Romania

Russia

Rwanda

Saint Kitts and Nevis

Saint Lucia

Saint Martin (French part)

Samoa

Saudi Arabia

Senegal

Serbia

Sierra Leone

Singapore

Slovakia

Slovenia

Solomon Islands

South Africa

Spain

Sri Lanka

Suriname

Swaziland

Sweden

Switzerland

Taiwan

Tanzania

Thailand

Togo

Trinidad and Tobago

Tunisia

Turkey

Uganda

Ukraine

United Arab Emirates

United Kingdom

United States

Uruguay

Uzbekistan

Venezuela

Vietnam

Yemen

Zambia

Zimbabwe

 

OR

The Importance of IHC/ICC Controls

Appropriate controls are critical for the accurate interpretation of IHC/ICC results. A satisfactory IHC/ICC experimental design produces results that demonstrate that the antigen is localized to the correct specialized tissues, cell types, or subcellular location. Optimization of fixation, blocking, antibody incubation, and antigen retrieval steps will generate a strong and specific signal. However, IHC/ICC experiments must include positive and negative controls to support the validity of staining and identify experimental artefacts. In addition, variances in antibody specificity, experimental conditions, biological conditions between tissue types, and even researchers may generate inconsistent staining and lead to inaccurate conclusions. To facilitate consistent performance, detailed record keeping is an important factor for IHC/ICC studies. Here, we describe several established controls that can be used to support the specificity of your IHC/ICC results.

Endogenous Tissue Background Control

Certain cells and tissues may have inherent biological properties resulting in background staining that could lead to a misinterpretation of the results. Before applying primary antibodies, cells and tissues should be inspected under the microscope using either fluorescence (for fluorescent labels) or bright-field (for chromogenic labels) illumination to ensure there is no signal inherent to the tissue itself. For instance, lipofuscin is an endogenous autofluorescent pigment that can be confused with positive staining.

Lipofuscin Background in Nervous System Tissue. Lipofuscin is a pigment that accumulates with age in many tissue types. It also has autofluorescent properties that overlap with excitation and emission spectra of commonly used fluorochromes. Circled in the micrographs above are lipofuscin-containing neurons that may appear labeled using either bright-field microscopy (A) or fluorescence microscopy in the green (B) and red spectrums (C).

No Primary Antibody Control

A control in which the tissue is incubated with antibody diluent, without the primary antibody included, is always necessary. This is followed by incubation with secondary antibodies and detection reagents. Staining with detection reagents alone should be negligible to the point that it does not obscure specific staining or resemble the specific staining pattern.

Isotype Control

This control can be utilized when working with monoclonal primary antibodies. The sample is incubated with antibody diluent, supplemented with a non-immune immunoglobulin of the same isotype (for example, IgG1, IgG2A, IgG2B, IgM) and concentration as the primary monoclonal antibody. The sample is then incubated with the secondary antibody and detection reagents. These steps will help ensure that what appears to be specific staining was not caused by non-specific interactions of immunoglobulin molecules with the sample. Background staining should be negligible and not resemble specific staining.

Absorption Control

To demonstrate that an antibody is binding specifically to the antigen of interest, it is first pre-incubated with the immunogen. This should inactivate the antibody and the tissue should show little or no staining. The antigen to antibody mixture should be made at a working dilution of 10:1 (molar ratio) and be pre-incubated overnight at 4 °C. The pre-absorbed antibody can then be incubated with tissue in place of the primary antibody alone. The staining pattern produced by the primary antibody can be compared to that produced by the pre-absorbed antibody.

Absorption controls work better if the immunogens are peptides. However, if antibodies were raised against the whole protein, addition of the mixture of antibody plus protein may result in higher non-specific staining. Although the mechanism is unclear, the antigen used for pre-absorption may itself bind to the tissue and result in non-specific staining. Thus, it is important to note that an absorption control using whole protein may not always confirm the specificity of an antibody for the protein in the tissue.

Absorption Control in Rat Dorsal Root Ganglion. A. A cryostat section of rat dorsal ganglion stained for phospho-MSK1 (S212) using anti-human phospho-MSK1 affinity-purified polyclonal antibody (Catalog # AF1036). B. Nuclear staining (indicated by arrows) is abolished if the antibody is first pre-absorbed with the S212 phosphorylated immunogen.

Tissue Type Control

Additional controls for IHC/ICC experiments include using tissue samples that are known to express (or not express) the epitope of interest. This strategy can provide a useful reference and may also be utilized during initial optimization studies. Tissue from transgenic animals that overexpress or do not express the antigen can be particularly useful. In addition, tissue samples from different species can be included to support the species-specificity of an antibody.

Limitations of Western Blot Comparisons

Western blot experiments are often conducted to complement and support IHC/ICC studies. However, changes in protein conformation during denaturation can result in potentially misleading results. For a given antibody, inconsistent results between Western blot and IHC/ICC studies may simply reflect differences in the experimental conditions employed. Since multiple epitopes are recognized, polyclonal antibodies are less vulnerable to such experimental artifacts.

LiteratureProduct CategoriesProtocols