Recombinant Mouse Flt-3 Ligand/FLT3L Protein

Earn double rewards for reviews
Formulations:
Catalog # Availability Size / Price Qty
427-FL-005
427-FL-025
Recombinant Mouse Flt-3 Ligand/FLT3L Protein Bioactivity
2 Images
Product Details
Citations (67)
FAQs
Reviews

Recombinant Mouse Flt-3 Ligand/FLT3L Protein Summary

Purity
>97%, by SDS-PAGE under reducing conditions and visualized by silver stain.
Endotoxin Level
<0.10 EU per 1 μg of the protein by the LAL method.
Activity
Measured in a cell proliferation assay using BaF3 mouse pro‑B cells transfected with mouse Flt-3. The ED50 for this effect is typically 0.4-2.4 ng/mL.
Source
Mouse myeloma cell line, NS0-derived mouse Flt-3 Ligand/FLT3L protein
Gly27-Arg188
Accession #
N-terminal Sequence
Analysis
Gly27
Predicted Molecular Mass
18 kDa
SDS-PAGE
Multiple bands between 18-32 kDa, reducing conditions

Product Datasheets

Carrier Free

What does CF mean?

CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins. Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration. The carrier free version does not contain BSA.

What formulation is right for me?

In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard. In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.

427-FL

Formulation Lyophilized from a 0.2 μm filtered solution in Acetonitrile and TFA with BSA as a carrier protein.
Reconstitution Reconstitute at 50 μg/mL in sterile PBS containing at least 0.1% human or bovine serum albumin.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.

427-FL/CF

Formulation Lyophilized from a 0.2 μm filtered solution in Acetonitrile and TFA.
Reconstitution Reconstitute at 50 µg/mL in sterile PBS.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.

Data Images

Bioactivity View Larger

Recombinant Mouse Flt-3 Ligand/FLT3L (Catalog # 427-FL) stimulates cell proliferation in the BaF3 mouse pro-B cell line transfected with mouse Flt-3. The ED50for this effect is 0.4-2.4 ng/mL.

SDS-PAGE View Larger

1 μg/lane of Recombinant Mouse Flt-3 Ligand/FLT3L was resolved with SDS-PAGE under reducing (R) conditions and visualized by silver staining, showing multiple bands between 18-32 kDa. Multiple bands are due to variable glycosylation of the protein.

Reconstitution Calculator

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Background: Flt-3 Ligand/FLT3L

Flt-3 Ligand, also known as FLT3L, is an alpha-helical cytokine that promotes the differentiation of multiple hematopoietic cell lineages (1-3). Mature mouse Flt‑3 Ligand consists of a 161 amino acid (aa) extracellular domain (ECD) with a cytokine-like domain and a juxtamembrane tether region, a 21 aa transmembrane segment, and a 22 aa cytoplasmic tail (4-6). Within the ECD, mouse Flt-3 Ligand shares 71% and 81% aa sequence identity with human and rat Flt-3 Ligand, respectively. The mouse and human Flt-3 Ligand proteins show cross-species activity (4, 5, 7). Flt-3 Ligand is also structurally related to M-CSF and SCF. Flt-3 Ligand is widely expressed in various mouse and human tissues. Flt-3 Ligand is expressed as a noncovalently-linked dimer by T cells and bone marrow and thymic fibroblasts (1, 8). Each 36 kDa chain of the Flt-3 Ligand dimer carries approximately 12 kDa of N- and O‑linked carbohydrates (8). Alternate splicing and proteolytic cleavage of the transmembrane form of the Flt-3 Ligand protein can generate a soluble 30 kDa fragment that includes the cytokine-like domain (4, 8). Alternate splicing of mouse Flt-3 Ligand also generates a membrane-associated isoform with a 57 aa substitution following the cytokine-like domain in the ECD of the Flt-3 Ligand protein (4, 5, 8, 9). Both transmembrane and soluble Flt-3 Ligand signal through the tyrosine kinase receptor Flt-3/Flk-2 (3 - 6). Flt-3 Ligand induces the expansion of monocytes and immature dendritic cells as well as early B cell lineage differentiation (2, 10). Additionally, Flt-3 Ligand synergizes with IL-3, GM‑CSF, and SCF to promote the mobilization and myeloid differentiation of hematopoietic stem cells (4, 5, 7). Flt-3 Ligand also cooperates with IL‑2, IL-6, IL-7, and IL-15 to induce NK cell development and with IL-3, IL-7, and IL‑11 to induce terminal B cell maturation (1, 11). Animal studies also show that Flt-3 Ligand reduces the severity of experimentally induced allergic inflammation (12).

References
  1. Wodnar-Filipowicz, A. (2003) News Physiol. Sci. 18:247.
  2. Dong, J. et al. (2002) Cancer Biol. Ther. 1:486.
  3. Gilliland, D.G. and J.D. Griffin (2002) Blood 100:1532.
  4. Hannum, C. et al. (1994) Nature 368:643.
  5. Lyman, S.D. et al. (1993) Cell 75:1157.
  6. Savvides, S.N. et al. (2000) Nat. Struct. Biol. 7:486.
  7. Lyman, S.D. et al. (1994) Blood 83:2795.
  8. McClanahan, T. et al. (1996) Blood 88:3371.
  9. Lyman, S.D. et al. (1995) Oncogene 10:149.
  10. Diener, K.R. et al. (2008) Exp. Hematol. 36:51.
  11. Farag, S.S. and M.A. Caligiuri (2006) Blood Rev. 20:123.
  12. Edwan, J.H. et al. (2004) J. Immunol. 172:5016.
Long Name
fms-like Tyrosine Kinase 3 Ligand
Entrez Gene IDs
2323 (Human); 14256 (Mouse); 493796 (Feline)
Alternate Names
FL; FLG3L; Flt3 ligand; Flt-3 Ligand; Flt3L; FLT3LG; fms-related tyrosine kinase 3 ligand; SL cytokine

Citations for Recombinant Mouse Flt-3 Ligand/FLT3L Protein

R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.

67 Citations: Showing 1 - 10
Filter your results:

Filter by:

  1. Hto, Tritiated Amino Acid Exposure and External Exposure Induce Differential Effects on Hematopoiesis and Iron Metabolism
    Authors: JM Bertho, D Kereselidz, L Manens, C Culeux, V Magneron, J Surette, M Blimkie, L Bertrand, H Wyatt, M Souidi, I Dublineau, N Priest, JR Jourdain
    Sci Rep, 2019;9(1):19919.
    Species: Mouse
    Sample Types: Plasma
    Applications: Multiplex Assay
  2. RBPJ-dependent Notch signaling initiates the T cell program in a subset of thymus-seeding progenitors
    Authors: ELY Chen, PK Thompson, JC Zúñiga-Pfl
    Nat. Immunol., 2019;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Cell Culture
  3. Interleukin-33 regulates hematopoietic stem cell regeneration after radiation injury
    Authors: P Huang, X Li, Y Meng, B Yuan, T Liu, M Jiao, X Wang, Y Liu, H Yin
    Stem Cell Res Ther, 2019;10(1):123.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  4. Rps14, Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q- syndrome
    Authors: F Ribezzo, IAM Snoeren, S Ziegler, J Stoelben, PA Olofsen, A Henic, MV Ferreira, S Chen, USA Stalmann, G Buesche, RM Hoogenboez, R Kramann, U Platzbecke, MHGP Raaijmaker, BL Ebert, RK Schneider
    Leukemia, 2019;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  5. The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance
    Authors: N Vannini, V Campos, M Girotra, V Trachsel, S Rojas-Sutt, J Tratwal, S Ragusa, E Stefanidis, D Ryu, PY Rainer, G Nikitin, S Giger, TY Li, A Semilietof, A Oggier, Y Yersin, L Tauzin, E Pirinen, WC Cheng, J Ratajczak, C Canto, M Ehrbar, F Sizzano, TV Petrova, D Vanhecke, L Zhang, P Romero, A Nahimana, S Cherix, MA Duchosal, PC Ho, B Deplancke, G Coukos, J Auwerx, MP Lutolf, O Naveiras
    Cell Stem Cell, 2019;24(3):405-418.e7.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  6. Muscle Stem Cells Give Rise to Rhabdomyosarcomas in a Severe Mouse Model of Duchenne Muscular Dystrophy
    Authors: F Boscolo Se, D Fox, A Sacco
    Cell Rep, 2019;26(3):689-701.e6.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  7. ZEB2 and LMO2 drive immature T-cell lymphoblastic leukemia via distinct oncogenic mechanisms
    Authors: S Goossens, J Wang, C Tremblay, J De Medts, S T'Sas, T Nguyen, J Saw, K Haigh, DJ Curtis, P Van Vlierb, G Berx, T Taghon, JJ Haigh
    Haematologica, 2019;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  8. Acutely malnourished weanling mice administered Flt3 ligand can support a cell-mediated inflammatory response
    Authors: LM Hillyer, B Woodward
    Cytokine, 2019;113(0):39-49.
    Species: Human
    Sample Types: Cell Culture Supernates
    Applications: ELISA (Standard)
  9. Wild-type Kras expands and exhausts hematopoietic stem cells
    Authors: JP Sasine, HA Himburg, CM Termini, M Roos, E Tran, L Zhao, J Kan, M Li, Y Zhang, SC de Barros, DS Rao, CM Counter, JP Chute
    JCI Insight, 2018;3(11):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  10. New therapeutic opportunities from dissecting the pre-B leukemia bone marrow microenvironment
    Authors: LC Cheung, J Tickner, AM Hughes, P Skut, M Howlett, B Foley, J Oommen, JE Wells, B He, S Singh, GA Chua, J Ford, CG Mullighan, RS Kotecha, UR Kees
    Leukemia, 2018;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  11. Global H3.3 dynamic deposition defines its bimodal role in cell fate transition
    Authors: HT Fang, CA El Farran, QR Xing, LF Zhang, H Li, B Lim, YH Loh
    Nat Commun, 2018;9(1):1537.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  12. Anti-cancer activity of Angelica gigas by increasing immune response and stimulating natural killer and natural killer T cells
    Authors: SH Kim, SW Lee, HJ Park, SH Lee, WK Im, YD Kim, KH Kim, SJ Park, S Hong, SH Jeon
    BMC Complement Altern Med, 2018;18(1):218.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  13. Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer
    Authors: GH Nam, EJ Lee, YK Kim, Y Hong, Y Choi, MJ Ryu, J Woo, Y Cho, DJ Ahn, Y Yang, IC Kwon, SY Park, IS Kim
    Nat Commun, 2018;9(1):2165.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  14. Enhancement of immunomodulative effect of lactic acid bacteria on plasmacytoid dendritic cells with sucrose palmitate
    Authors: M Kanayama, Y Kato, T Tsuji, Y Konoeda, A Hashimoto, O Kanauchi, T Fujii, D Fujiwara
    Sci Rep, 2018;8(1):3147.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  15. Flt3 ligand treatment reduces enterovirus A71 lethality in mice with enhanced B cell responses
    Authors: YW Lin, LC Wang, CK Lee, SH Chen
    Sci Rep, 2018;8(1):12184.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  16. Mapping Active Gene-Regulatory Regions in Human Repopulating Long-Term HSCs
    Authors: P Wünsche, ESP Eckert, T Holland-Le, A Paruzynski, A Hotz-Wagen, R Fronza, T Rath, I Gil-Farina, M Schmidt, C von Kalle, C Klein, CR Ball, F Herbst, H Glimm
    Cell Stem Cell, 2018;23(1):132-146.e9.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  17. Wild-type Kras expands and exhausts hematopoietic stem cells
    Authors: JP Sasine, HA Himburg, CM Termini, M Roos, E Tran, L Zhao, J Kan, M Li, Y Zhang, SC de Barros, DS Rao, CM Counter, JP Chute
    JCI Insight, 2018;3(11):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  18. Lupus acceleration by a MAVS-activating RNA virus requires endosomal TLR signaling and host genetic predisposition
    Authors: R Gonzalez-Q, A Nguyen, DH Kono, MBA Oldstone, AN Theofilopo, R Baccala
    PLoS ONE, 2018;13(9):e0203118.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  19. Arginine methylation controls the strength of ?c-family cytokine signaling in T cell maintenance
    Authors: M Inoue, K Okamoto, A Terashima, T Nitta, R Muro, T Negishi-Ko, T Kitamura, T Nakashima, H Takayanagi
    Nat. Immunol., 2018;19(11):1265-1276.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  20. mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis
    Authors: SK Martin, S Fitter, N El Khawank, RH Grose, CR Walkley, LE Purton, MA Ruegg, MN Hall, S Gronthos, ACW Zannettino
    Sci Rep, 2018;8(1):14501.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  21. Mutation-specific signaling profiles and kinase inhibitor sensitivities of juvenile myelomonocytic leukemia revealed by induced pluripotent stem cells
    Authors: SK Tasian, JA Casas, D Posocco, S Gandre-Bab, AL Gagne, G Liang, ML Loh, MJ Weiss, DL French, ST Chou
    Leukemia, 2018;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  22. Macrophages and osteoclasts stem from a bipotent progenitor downstream of a macrophage/osteoclast/dendritic cell progenitor
    Authors: Y Xiao, J Palomero, J Grabowska, L Wang, I de Rink, L van Helver, J Borst
    Blood Adv, 2017;1(23):1993-2006.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Differentiation
  23. Progenitor T-cell differentiation from hematopoietic stem cells using Delta-like-4 and VCAM-1
    Authors: S Shukla, MA Langley, J Singh, JM Edgar, M Mohtashami, JC Zúñiga-Pfl, PW Zandstra
    Nat. Methods, 2017;14(5):531-538.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  24. Lentivector Iterations and Pre-Clinical Scale-Up/Toxicity Testing: Targeting Mobilized CD34(+) Cells for Correction of Fabry Disease
    Authors: J Huang, A Khan, BC Au, DL Barber, L López-Vásq, NL Prokopishy, M Boutin, M Rothe, JW Rip, M Abaoui, MS Nagree, S Dworski, A Schambach, A Keating, ML West, J Klassen, PV Turner, S Sirrs, CA Rupar, C Auray-Blai, R Foley, JA Medin
    Mol Ther Methods Clin Dev, 2017;5(0):241-258.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  25. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs
    Authors: S Ma, X Wan, Z Deng, L Shi, C Hao, Z Zhou, C Zhou, Y Fang, J Liu, J Yang, X Chen, T Li, A Zang, S Yin, B Li, J Plumas, L Chaperot, X Zhang, G Xu, L Jiang, N Shen, S Xiong, X Gao, Y Zhang, H Xiao
    J. Exp. Med., 2017;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  26. T cell progenitor therapy-facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction
    Authors: MJ Smith, DK Reichenbac, SL Parker, MJ Riddle, J Mitchell, KC Osum, M Mohtashami, HE Stefanski, BT Fife, A Bhandoola, KA Hogquist, GA Holländer, JC Zúñiga-Pfl, J Tolar, BR Blazar
    JCI Insight, 2017;2(10):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  27. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins
    Nat. Med., 2016;22(6):672-8.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  28. Alpha 1 Antitrypsin Inhibits Dendritic Cell Activation and Attenuates Nephritis in a Mouse Model of Lupus
    Authors: Ahmed S Elshikha
    PLoS ONE, 2016;11(5):e0156583.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  29. Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors
    Nat Commun, 2016;7(0):13396.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  30. The non-canonical Wnt receptor Ryk regulates hematopoietic stem cell repopulation in part by controlling proliferation and apoptosis
    Cell Death Dis, 2016;7(11):e2479.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  31. Gene Therapy Induces Antigen-Specific Tolerance in Experimental Collagen-Induced Arthritis
    PLoS ONE, 2016;11(5):e0154630.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  32. Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms
    Nat. Med, 2016;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  33. Orientation-specific RAG activity in chromosomal loop domains contributes to Tcrd V(D)J recombination during T cell development
    Authors: L Zhao, RL Frock, Z Du, J Hu, L Chen, MS Krangel, FW Alt
    J. Exp. Med, 2016;213(9):1921-36.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  34. Differential Cultivation of Francisella tularensis Induces Changes in the Immune Response to and Protective Efficacy of Whole Cell-Based Inactivated Vaccines
    Authors: S Kumar, R Sunagar, G Pham, BJ Franz, SJ Rosa, KR Hazlett, EJ Gosselin
    Front Immunol, 2016;7(0):677.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  35. Hepatitis C Virus Stimulates Murine CD8?-Like Dendritic Cells to Produce Type I Interferon in a TRIF-Dependent Manner
    PLoS Pathog, 2016;12(7):e1005736.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  36. Guanine-modified inhibitory oligonucleotides efficiently impair TLR7- and TLR9-mediated immune responses of human immune cells.
    Authors: Rommler F, Hammel M, Waldhuber A, Muller T, Jurk M, Uhlmann E, Wagner H, Vollmer J, Miethke T
    PLoS ONE, 2015;10(2):e0116703.
    Species: Mouse
    Sample Types: Cell Culture Supernates
    Applications: Bioassay
  37. Ubiquitous Over-Expression of Chromatin Remodeling Factor SRG3 Ameliorates the T Cell-Mediated Exacerbation of EAE by Modulating the Phenotypes of both Dendritic Cells and Macrophages.
    Authors: Lee S, Park H, Jeon S, Lee C, Seong R, Park S, Hong S
    PLoS ONE, 2015;10(7):e0132329.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  38. Lignin-rich enzyme lignin (LREL), a cellulase-treated lignin-carbohydrate derived from plants, activates myeloid dendritic cells via Toll-like receptor 4 (TLR4).
    J Biol Chem, 2015;290(0):4410-21.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  39. Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-beta Production.
    Authors: Niedzielska M, Raffi F, Tel J, Muench S, Jozefowski K, Alati N, Lahl K, Mages J, Billmeier U, Schiemann M, Appelt U, Wirtz S, Sparwasser T, Hochrein H, Figdor C, Keyse S, Lang R
    J Immunol, 2015;195(4):1753-62.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  40. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice.
    Authors: Martinez-Lopez M, Iborra S, Conde-Garrosa R, Sancho D
    Eur J Immunol, 2015;45(1):119-29.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  41. FcgammaRIIB prevents inflammatory type I IFN production from plasmacytoid dendritic cells during a viral memory response.
    Authors: Flores M, Chew C, Tyan K, Huang W, Salem A, Clynes R
    J Immunol, 2015;194(9):4240-50.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  42. Modified vaccinia virus Ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway.
    Authors: Dai P, Wang W, Cao H, Avogadri F, Dai L, Drexler I, Joyce J, Li X, Chen Z, Merghoub T, Shuman S, Deng L
    PLoS Pathog, 2014;10(4):e1003989.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  43. Leukotriene B4 amplifies eosinophil accumulation in response to nematodes.
    Authors: Patnode M, Bando J, Krummel M, Locksley R, Rosen S
    J Exp Med, 2014;211(7):1281-8.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  44. Ectopic TLX1 expression accelerates malignancies in mice deficient in DNA-PK.
    Authors: Krutikov K, Zheng Y, Chesney A, Huang X, Vaags A, Evdokimova V, Hough M, Chen E
    PLoS ONE, 2014;9(2):e89649.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  45. The TCR ligand-inducible expression of CD73 marks gammadelta lineage commitment and a metastable intermediate in effector specification.
    Authors: Coffey F, Lee S, Buus T, Lauritsen J, Wong G, Joachims M, Thompson L, Zuniga-Pflucker J, Kappes D, Wiest D
    J Exp Med, 2014;211(2):329-43.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  46. Dendritic cells activated by double-stranded RNA induce arthritis via autocrine type I IFN signaling.
    Authors: Narendra S, Chalise J, Hook N, Magnusson M
    J Leukoc Biol, 2014;95(4):661-6.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  47. Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis.
    Authors: Boettcher S, Gerosa R, Radpour R, Bauer J, Ampenberger F, Heikenwalder M, Kopf M, Manz M
    Blood, 2014;124(9):1393-403.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  48. Sphingosine kinase 2 promotes acute lymphoblastic leukemia by enhancing MYC expression.
    Authors: Wallington-Beddoe C, Powell J, Tong D, Pitson S, Bradstock K, Bendall L
    Cancer Res, 2014;74(10):2803-15.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  49. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential.
    Authors: Treanor L, Zhou S, Janke L, Churchman M, Ma Z, Lu T, Chen S, Mullighan C, Sorrentino B
    J Exp Med, 2014;211(4):701-13.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  50. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells.
    Authors: Gatto D, Wood K, Caminschi I, Murphy-Durland D, Schofield P, Christ D, Karupiah G, Brink R
    Nat Immunol, 2013;14(5):446-53.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  51. Induction of a hemogenic program in mouse fibroblasts.
    Authors: Pereira C, Chang B, Qiu J, Niu X, Papatsenko D, Hendry C, Clark N, Nomura-Kitabayashi A, Kovacic J, Ma'ayan A, Schaniel C, Lemischka I, Moore K
    Cell Stem Cell, 2013;13(2):205-18.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  52. The E3 ubiquitin ligases RNF126 and Rabring7 regulate endosomal sorting of the epidermal growth factor receptor.
    Authors: Smith, Christop, Berry, Donna M, McGlade, C Jane
    J Cell Sci, 2013;126(0):1366-80.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  53. Identification of transcription factors for lineage-specific ESC differentiation.
    Authors: Yamamizu K, Piao Y, Sharov A, Zsiros V, Yu H, Nakazawa K, Schlessinger D, Ko M
    Stem Cell Reports, 2013;1(6):545-59.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  54. Derivation of injury-responsive dendritic cells for acute brain targeting and therapeutic protein delivery in the stroke-injured rat.
    Authors: Manley, Nathan C, Caso, Javier R, Works, Melissa, Cutler, Andrew B, Zemlyak, Ilona, Sun, Guohua, Munhoz, Carolina, Chang, Sydney, Sorrells, Shawn F, Ermini, Florian, Decker, Johannes, Bertrand, Anthony, Dinkel, Klaus M, Steinberg, Gary K, Sapolsky, Robert M
    PLoS ONE, 2013;8(4):e61789.
    Species: Rat
    Sample Types: Whole Cells
    Applications: Bioassay
  55. Synergistic induction of interferon alpha through TLR-3 and TLR-9 agonists identifies CD21 as interferon alpha receptor for the B cell response.
    Authors: Kim D, Niewiesk S
    PLoS Pathog, 2013;9(3):e1003233.
    Species: Cotton Rat
    Sample Types: Whole Cells
    Applications: Bioassay
  56. Gata2 cis-element is required for hematopoietic stem cell generation in the mammalian embryo.
    Authors: Gao, Xin, Johnson, Kirby D, Chang, Yuan-I, Boyer, Meghan E, Dewey, Colin N, Zhang, Jing, Bresnick, Emery H
    J Exp Med, 2013;210(13):2833-42.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  57. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice.
    Authors: Iborra S, Izquierdo HM, Martinez-Lopez M, Blanco-Menendez N, Reis E Sousa C, Sancho D
    J. Clin. Invest., 2012;122(5):1628-43.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  58. Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin.
    Authors: Shinohara ML, Kim JH, Garcia VA, Cantor H
    Immunity, 2008;29(1):68-78.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  59. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance.
    Authors: Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, Bistoni F, Puccetti P, Kastelein RA, Kopf M, Romani L
    Eur. J. Immunol., 2007;37(10):2695-706.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  60. Differential requirements for hematopoietic commitment between human and rhesus embryonic stem cells.
    Authors: Rajesh&lt;/LastName&gt;&lt;ForeNam D&lt;/Initial, Rajesh D, Chinnasamy N, Mitalipov SM, Wolf DP, Slukvin I, Thomson JA, Shaaban AF
    Stem Cells, 2007;25(2):490-9.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  61. Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo.
    Authors: Braun BS, Archard JA, Van Ziffle JA, Tuveson DA, Jacks TE, Shannon K
    Blood, 2006;108(6):2041-4.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  62. Jagged2-expressing hematopoietic progenitors promote regulatory T cell expansion in the periphery through notch signaling.
    Authors: Kared H, Adle-Biassette H, Fois E, Masson A, Bach JF, Chatenoud L, Schneider E, Zavala F
    Immunity, 2006;25(5):823-34.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  63. Comparative analysis of the fate of donor dendritic cells and B cells and their influence on alloreactive T cell responses under tacrolimus immunosuppression.
    Authors: Azhipa O, Kimizuka K, Nakao A, Toyokawa H, Okuda T, Neto JS, Alber SM, Kaizu T, Thomson AW, Demetris AJ, Murase N
    Clin. Immunol., 2005;114(2):199-209.
    Species: Rat
    Sample Types: Whole Cells
    Applications: Bioassay
  64. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node.
    Authors: Miller MJ, Hejazi AS, Wei SH, Cahalan MD, Parker I
    Proc. Natl. Acad. Sci. U.S.A., 2004;101(4):998-1003.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  65. Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody.
    Authors: Asselin-Paturel C, Brizard G, Pin JJ, Briere F, Trinchieri G
    J. Immunol., 2003;171(12):6466-77.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  66. Modulation of marrow proliferation and chemosensitivity by tumor-produced cytokines from syngeneic pancreatic tumor lines.
    Authors: Blumenthal RD, Reising A, Leon E
    Clin. Cancer Res., 2002;8(5):1301-9.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  67. A secreted and LIF-mediated stromal cell-derived activity that promotes ex vivo expansion of human hematopoietic stem cells.
    Authors: Shih CC, Hu MC, Hu J
    Blood, 2000;95(6):1957-66.
    Species: Mouse
    Sample Types: Cell Culture Supernates
    Applications: ELISA Developmet

FAQs

No product specific FAQs exist for this product, however you may

View all Proteins and Enzyme FAQs

Reviews for Recombinant Mouse Flt-3 Ligand/FLT3L Protein

There are currently no reviews for this product. Be the first to review Recombinant Mouse Flt-3 Ligand/FLT3L Protein and earn rewards!

Have you used Recombinant Mouse Flt-3 Ligand/FLT3L Protein?

Submit a review and receive an Amazon gift card.

$25/€18/£15/$25CAN/¥75 Yuan/¥1250 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review