Recombinant Human Ubiquitin Protein, CF

Catalog # Availability Size / Price Qty
U-100H-10M
R&D Systems Recombinant Proteins and Enzymes
1 Image
Product Details
Citations (112)
FAQs
Supplemental Products
Reviews (2)

Recombinant Human Ubiquitin Protein, CF Summary

Product Specifications

Purity
>95%, by SDS-PAGE under reducing conditions and visualized by Colloidal Coomassie® Blue stain.
Activity
Recombinant Human Ubiquitin can be conjugated to substrate proteins via the subsequent actions of a Ubiquitin-activating (E1) enzyme, a Ubiquitin-conjugating (E2) enzyme, and a Ubiquitin ligase (E3). Reaction conditions will need to be optimized for each specific application. We recommend an initial Recombinant Human Ubiquitin concentration of 0.01-0.5 mM.
Source
E. coli-derived human Ubiquitin protein
Met1 - Gly76
Accession #
Predicted Molecular Mass
8.6 kDa

Complete Your Research

Product Datasheets

You must select a language.

x

U-100H

Carrier Free

What does CF mean?

CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins. Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration. The carrier free version does not contain BSA.

What formulation is right for me?

In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard. In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.

U-100H

Formulation Lyophilized from a 0.2 μm filtered solution in deionized water.
Reconstitution Reconstitute at 10 mg/mL in an aqueous solution.
Shipping The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 6 months from date of receipt, -20 to -70 °C as supplied.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.
Reconstitution Calculator

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Background: Ubiquitin

Ubiquitin is a 76 amino acid (aa) protein that is ubiquitously expressed in all eukaryotic organisms. Ubiquitin is highly conserved with 96% aa sequence identity shared between human and yeast Ubiquitin, and 100% aa sequence identity shared between human and mouse Ubiquitin (1). In mammals, four Ubiquitin genes encode for two Ubiquitin-ribosomal fusion proteins and two poly-Ubiquitin proteins. Cleavage of the Ubiquitin precursors by deubiquitinating enzymes gives rise to identical Ubiquitin monomers each with a predicted molecular weight of 8.6 kDa. Conjugation of Ubiquitin to target proteins involves the formation of an isopeptide bond between the C-terminal glycine residue of Ubiquitin and a lysine residue in the target protein. This process of conjugation, referred to as ubiquitination or ubiquitylation, is a multi-step process that requires three enzymes: a Ubiquitin-activating (E1) enzyme, a Ubiquitin-conjugating (E2) enzyme, and a Ubiquitin ligase (E3). Ubiquitination is classically recognized as a mechanism to target proteins for degradation and as a result, Ubiquitin was originally named ATP-dependent Proteolysis Factor 1 (APF-1) (2,3). In addition to protein degradation, ubiquitination has been shown to mediate a variety of biological processes such as signal transduction, endocytosis, and post-endocytic sorting (4-7).

The Ubiquitin product was processed to eliminate glycine and buffer salts which can interfere with chemical and in vitro reactions.

References
  1. Sharp, P.M. & W.-H. Li. (1987) Trends Ecol. Evol. 2:328.
  2. Ciechanover, A. et al. (1980 ) Proc. Natl. Acad. Sci. USA 77:1365.
  3. Hershko, A. et al. (1980) Proc. Natl. Acad. Sci. USA 77:1783.
  4. Greene, W. et al. (2012) PLoS Pathog. 8:e1002703.
  5. Tong, X. et al. (2012) J. Biol. Chem. 287:25280.
  6. Wei, W. et al. (2004) Nature 428:194.
  7. Wertz, I.E. et al. (2004) Nature 430:694.
Entrez Gene IDs
7314 (Human); 298693 (Rat)
Alternate Names
RPS27A; UBA52; UBB ubiquitin B; UBB; UBC; Ubiquitin

Citations for Recombinant Human Ubiquitin Protein, CF

R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.

112 Citations: Showing 1 - 10
Filter your results:

Filter by:

  1. Cooperative assembly of p97 complexes involved in replication termination
    Authors: OV Kochenova, S Mukkavalli, M Raman, JC Walter
    Nature Communications, 2022;13(1):6591.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  2. USP14-regulated allostery of the human proteasome by time-resolved cryo-EM
    Authors: S Zhang, S Zou, D Yin, L Zhao, D Finley, Z Wu, Y Mao
    Nature, 2022;605(7910):567-574.
    Species: Human
    Sample Types: Recombinant Proteins
    Applications: Bioassay
  3. Host E3 ligase HUWE1 attenuates the pro-apoptotic activity of the MERS-CoV accessory protein ORF3 by promoting its ubiquitin-dependent degradation
    Authors: Y Zhou, R Zheng, S Liu, C Disoma, A Du, S Li, Z Chen, Z Dong, Y Zhang, S Li, P Liu, A Razzaq, X Chen, Y Liao, S Tao, Y Liu, L Xu, Q Zhang, J Peng, X Deng, S Li, T Jiang, Z Xia
    The Journal of Biological Chemistry, 2022;0(0):101584.
    Species: Human
    Sample Types: Recombinant Proteins
    Applications: Bioassay
  4. Site-specific ubiquitination of MLKL targets it to endosomes and targets Listeria and Yersinia to the lysosomes
    Authors: S Yoon, K Bogdanov, D Wallach
    Cell Death and Differentiation, 2022;0(0):.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  5. Regulation of p27 (Kip1) by Ubiquitin E3 Ligase RNF6
    Authors: D Deshmukh, J Xu, X Yang, H Shimelis, S Fang, Y Qiu
    Pharmaceutics, 2022;14(4):.
    Species: N/A
    Sample Types: Recombinant Protein
    Applications: Bioassay
  6. Two distinct classes of co-chaperones compete for the EEVD motif in heat shock protein 70 (Hsp70) to tune its chaperone activities
    Authors: OT Johnson, CM Nadel, EC Carroll, T Arhar, JE Gestwicki
    The Journal of Biological Chemistry, 2022;0(0):101697.
    Species: Human
    Sample Types: Recombinant Proteins
    Applications: Bioassay
  7. Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription
    Authors: SB Lee, L Garofano, A Ko, F D'Angelo, B Frangaj, D Sommer, Q Gan, K Kim, T Cardozo, A Iavarone, A Lasorella
    Nature Communications, 2022;13(1):2089.
    Species: Human
    Sample Types: Cell Lysates
    Applications: Bioassay
  8. Inhibition of UBA6 by inosine augments tumour immunogenicity and responses
    Authors: L Zhang, L Jiang, L Yu, Q Li, X Tian, J He, L Zeng, Y Yang, C Wang, Y Wei, X Jiang, J Li, X Ge, Q Gu, J Li, D Wu, AJ Sadler, D Yu, D Xu, Y Gao, X Yuan, B He
    Nature Communications, 2022;13(1):5413.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  9. The E3 ubiquitin ligase MG53 inhibits hepatocellular carcinoma by targeting RAC1 signaling
    Authors: X Ma, X Ma, L Zhu, Y Zhao, M Chen, T Li, Y Lin, D Ma, C Sun, L Han
    Oncogenesis, 2022;11(1):40.
    Species: Human
    Sample Types: Recombinant Proteins
    Applications: Bioassay
  10. The cysteine residue in beta-lactoglobulin reacts with oxidized tyrosine residues in beta-casein to give casein-lactoglobulin dimers
    Authors: L Doblas, PM Hägglund, E Fuentes-Le, MJ Davies
    Archives of biochemistry and biophysics, 2022;733(0):109482.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  11. An alpha/beta hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice
    Authors: YH Xiang, JJ Yu, B Liao, JX Shan, WW Ye, NQ Dong, T Guo, Y Kan, H Zhang, YB Yang, YC Li, HY Zhao, HX Yu, ZQ Lu, HX Lin
    Molecular plant, 2022;0(0):.
    Species: Rice
    Sample Types: Recombinant Protein
    Applications: Bioassay
  12. DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates
    Authors: K Zhu, MJ Suskiewicz, A Hloušek-Ka, H Meudal, A Miko?, V Aucagne, D Ahel, I Ahel
    Science Advances, 2022;8(40):eadd4253.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  13. E3 ligase Nedd4l promotes antiviral innate immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3
    Authors: P Gao, X Ma, M Yuan, Y Yi, G Liu, M Wen, W Jiang, R Ji, L Zhu, Z Tang, Q Yu, J Xu, R Yang, S Xia, M Yang, J Pan, H Yuan, H An
    Nature Communications, 2021;12(1):1194.
    Species: Human
    Sample Types: Cell Lysates
    Applications: Ubiquitination
  14. RNF19A-mediated ubiquitination of BARD1 prevents BRCA1/BARD1-dependent homologous recombination
    Authors: Q Zhu, J Huang, H Huang, H Li, P Yi, JA Kloeber, J Yuan, Y Chen, M Deng, K Luo, M Gao, G Guo, X Tu, P Yin, Y Zhang, J Su, J Chen, Z Lou
    Nature Communications, 2021;12(1):6653.
    Species: Human
    Sample Types: Recombinant Proteins
    Applications: Bioassay
  15. The P300/XBP1s/Herpud1 axis promotes macrophage M2 polarization and the development of choroidal neovascularization
    Authors: W Li, Y Wang, L Zhu, S Du, J Mao, Y Wang, S Wang, Q Bo, Y Tu, Q Yi
    Journal of Cellular and Molecular Medicine, 2021;0(0):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  16. Transcription- and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology
    Authors: W El Manaa, E Duplan, T Goiran, I Lauritzen, L Vaillant B, S Lacas-Gerv, VA Morais, H You, L Qi, M Salazar, U Ozcan, M Chami, F Checler, C Alves da C
    Autophagy, 2021;0(0):1-23.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  17. PARylation prevents the proteasomal degradation of topoisomerase I DNA-protein crosslinks and induces their deubiquitylation
    Authors: Y Sun, J Chen, SN Huang, YP Su, W Wang, K Agama, S Saha, LM Jenkins, JM Pascal, Y Pommier
    Nature Communications, 2021;12(1):5010.
    Species: Human
    Sample Types:
    Applications: Bioassay
  18. Antibody toolkit reveals N-terminally ubiquitinated substrates of UBE2W
    Authors: CW Davies, SE Vidal, L Phu, J Sudhamsu, TB Hinkle, S Chan Rosen, FR Schumacher, YJ Zeng, C Schwerdtfe, AS Peterson, JR Lill, CM Rose, AS Shaw, IE Wertz, DS Kirkpatric, JT Koerber
    Nature Communications, 2021;12(1):4608.
    Species: Human
    Sample Types: Recombinant Proteins
    Applications: Bioassay
  19. BRCA1-BARD1 regulates transcription through modulating topoisomerase IIbeta
    Authors: H Bunch, J Jeong, K Kang, DS Jo, ATQ Cong, D Kim, D Kim, DH Cho, YM Lee, BPC Chen, MJ Schellenbe, SK Calderwood
    Open Biology, 2021;11(10):210221.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Enzyme Assay
  20. FBXL20 promotes breast cancer malignancy by inhibiting apoptosis through degradation of PUMA and BAX
    Authors: RK Manne, Y Agrawal, SK Malonia, S Banday, S Edachery, A Patel, A Kumar, P Shetty, MK Santra
    The Journal of Biological Chemistry, 2021;0(0):101253.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  21. SARS-CoV-2 Nsp5 Demonstrates Two Distinct Mechanisms Targeting RIG-I and MAVS To Evade the Innate Immune Response
    Authors: Y Liu, C Qin, Y Rao, C Ngo, JJ Feng, J Zhao, S Zhang, TY Wang, J Carriere, AC Savas, M Zarinfar, S Rice, H Yang, W Yuan, JA Camarero, J Yu, XS Chen, C Zhang, P Feng
    MBio, 2021;0(0):e0233521.
    Species: Escherichia coli
    Sample Types: Recombinant Protein
    Applications: Bioassay
  22. G3BP1 inhibits Cul3SPOP to amplify AR signaling and promote prostate cancer
    Authors: C Mukhopadhy, C Yang, L Xu, D Liu, Y Wang, D Huang, LD Deonarine, J Cyrta, E Davicioni, A Sboner, BD Robinson, AM Chinnaiyan, MA Rubin, CE Barbieri, P Zhou
    Nature Communications, 2021;12(1):6662.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  23. Structural basis of human transcription-DNA repair coupling
    Authors: G Kokic, FR Wagner, A Chernev, H Urlaub, P Cramer
    Nature, 2021;0(0):.
    Species: Human
    Sample Types: Recombinant Proteins
    Applications: Bioassay
  24. The San1 Ubiquitin Ligase Avidly Recognizes Misfolded Proteins through Multiple Substrate Binding Sites
    Authors: R Ibarra, HR Borror, B Hart, RG Gardner, G Kleiger
    Biomolecules, 2021;11(11):.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  25. Competitive binding of E3 ligases TRIM26 and WWP2 controls SOX2 in glioblastoma
    Authors: T Mahlokozer, B Patel, H Chen, P Desouza, X Qu, DD Mao, D Hafez, W Yang, R Taiwo, M Paturu, A Salehi, AD Gujar, GP Dunn, N Mosammapar, AA Petti, H Yano, AH Kim
    Nature Communications, 2021;12(1):6321.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  26. Structure of CRL2Lrr1, the E3 ubiquitin ligase that promotes DNA replication termination in vertebrates
    Authors: H Zhou, MS Zaher, JC Walter, A Brown
    Nucleic Acids Research, 2021;0(0):.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  27. Effect of macromolecular crowding on protein oxidation: Consequences on the rate, extent and oxidation pathways
    Authors: E Fuentes-Le, JS Reyes, LF Gamon, C López-Alar, MJ Davies
    Redox Biology, 2021;48(0):102202.
    Species: Human
    Sample Types: Peptide
    Applications: Bioassay
  28. ANKRD13a controls early cell-death checkpoint by interacting with RIP1 independent of NF-kappaB
    Authors: M Won, KA Park, S Kim, E Ju, Y Ko, H Yoo, H Ro, J Lee, J Oh, EG Lee, SY Kim, SW Nam, HM Shen, MK Yeo, JM Kim, GM Hur
    Cell Death and Differentiation, 2021;0(0):.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  29. Targeting a helix-in-groove interaction between E1 and E2 blocks ubiquitin transfer
    Authors: AM Cathcart, GH Bird, TE Wales, HD Herce, EP Harvey, ZJ Hauseman, CE Newman, U Adhikary, MS Prew, T Oo, S Lee, JR Engen, LD Walensky
    Nat. Chem. Biol., 2020;0(0):.
    Species: Human
    Sample Types: Cell Lysates
    Applications: Bioassay
  30. piRNA-independent function of PIWIL1 as a co-activator for anaphase promoting complex/cyclosome to drive pancreatic cancer metastasis
    Authors: F Li, P Yuan, M Rao, CH Jin, W Tang, YF Rong, YP Hu, F Zhang, T Wei, Q Yin, T Liang, L Wu, J Li, D Li, Y Liu, W Lou, S Zhao, MF Liu
    Nat. Cell Biol., 2020;0(0):.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  31. Crystal structure of GCN5 PCAF�N-terminal domain reveals atypical ubiquitin ligase structure
    Authors: ST Fukai, R Hibi, T Naganuma, M Sakai, S Saijo, N Shimizu, M Matsumoto, T Shimizu
    J. Biol. Chem., 2020;0(0):.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  32. Extracellular matrix stiffness determines DNA repair efficiency and cellular sensitivity to genotoxic agents
    Authors: M Deng, J Lin, S Nowsheen, T Liu, Y Zhao, PW Villalta, D Sicard, DJ Tschumperl, S Lee, J Kim, Z Lou
    Science Advances, 2020;6(37):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  33. CHIP ubiquitylates NOXA and induces its lysosomal degradation in response to DNA damage
    Authors: MC Albert, K Brinkmann, W Pokrzywa, SD Günther, M Krönke, T Hoppe, H Kashkar
    Cell Death & Disease, 2020;11(9):740.
    Species: Human
    Sample Types: Whole Cells
    Applications: Ubiquitylation
  34. PHF7 Modulates BRDT Stability and Histone-to-Protamine Exchange during Spermiogenesis
    Authors: CR Kim, T Noda, H Kim, G Kim, S Park, Y Na, S Oura, K Shimada, I Bang, JY Ahn, YR Kim, SK Oh, HJ Choi, JS Kim, I Jung, H Lee, Y Okada, M Ikawa, SH Baek
    Cell Rep, 2020;32(4):107950.
    Species: Mouse
    Sample Types: Protein
    Applications: Bioassay
  35. Targeting a helix-in-groove interaction between E1 and E2 blocks ubiquitin transfer
    Authors: AM Cathcart, GH Bird, TE Wales, HD Herce, EP Harvey, ZJ Hauseman, CE Newman, U Adhikary, MS Prew, T Oo, S Lee, JR Engen, LD Walensky
    Nat. Chem. Biol., 2020;0(0):.
    Species: E. Coli
    Sample Types: Protein
    Applications: Bioassay
  36. Crystal structure of GCN5 PCAF�N-terminal domain reveals atypical ubiquitin ligase structure
    Authors: ST Fukai, R Hibi, T Naganuma, M Sakai, S Saijo, N Shimizu, M Matsumoto, T Shimizu
    J. Biol. Chem., 2020;0(0):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Ubiquitination
  37. The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency
    Authors: M Gatti, R Imhof, Q Huang, M Baudis, M Altmeyer
    Cell Rep, 2020;32(5):107985.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  38. A ubiquitin switch controls autocatalytic inactivation of the DNA-protein crosslink repair protease SPRTN
    Authors: S Zhao, A Kieser, HY Li, HK Reinking, P Weickert, S Euteneuer, D Yaneva, AC Acampora, MJ Götz, R Feederle, J Stingele
    Nucleic Acids Research, 2020;0(0):.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  39. Crystal structure of the SALL4-pomalidomide-cereblon-DDB1 complex
    Authors: ME Matyskiela, T Clayton, X Zheng, C Mayne, E Tran, A Carpenter, B Pagarigan, J McDonald, M Rolfe, LG Hamann, G Lu, PP Chamberlai
    Nat. Struct. Mol. Biol., 2020;27(4):319-322.
    Species: Spodoptera frugiperda
    Sample Types: Whole Cells
    Applications: Ubiquitination
  40. Sensitive ELISA-based detection method for the mitophagy marker p-S65-Ub in human cells, autopsy brain, and blood samples
    Authors: JO Watzlawik, X Hou, D Fricova, C Ramnarine, SK Barodia, TF Gendron, MG Heckman, M DeTure, J Siuda, ZK Wszolek, CR Scherzer, OA Ross, G Bu, DW Dickson, MS Goldberg, FC Fiesel, W Springer
    Autophagy, 2020;0(0):1-16.
    Species: Human
    Sample Types: N/A
    Applications: Western Blot
  41. DBC1 Regulates p53 Stability via Inhibition of CBP-Dependent p53 Polyubiquitination
    Authors: OE Akande, PK Damle, M Pop, NE Sherman, BB Szomju, LV Litovchick, SR Grossman
    Cell Rep, 2019;26(12):3323-3335.e4.
    Applications: Bioassay
  42. The FBXW7-SHOC2-Raptor Axis Controls the Cross-Talks between the RAS-ERK and mTORC1 Signaling Pathways
    Authors: CM Xie, M Tan, XT Lin, D Wu, Y Jiang, Y Tan, H Li, Y Ma, X Xiong, Y Sun
    Cell Rep, 2019;26(11):3037-3050.e4.
    Applications: Bioassay
  43. K27-linked ubiquitination of BRAF by ITCH engages cytokine response to maintain MEK-ERK signaling
    Authors: Q Yin, T Han, B Fang, G Zhang, C Zhang, ER Roberts, V Izumi, M Zheng, S Jiang, X Yin, M Kim, J Cai, EB Haura, JM Koomen, KSM Smalley, L Wan
    Nat Commun, 2019;10(1):1870.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Ubiquitination
  44. Cbl interacts with multiple E2s in vitro and in cells
    Authors: MS Liyasova, K Ma, D Voeller, PE Ryan, J Chen, RE Klevit, S Lipkowitz
    PLoS ONE, 2019;14(5):e0216967.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Ubiquitination
  45. Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response
    Authors: J Sitz, SA Blanchet, SF Gameiro, E Biquand, TM Morgan, M Galloy, J Dessapt, EG Lavoie, A Blondeau, BC Smith, JS Mymryk, CA Moody, A Fradet-Tur
    Proc. Natl. Acad. Sci. U.S.A., 2019;116(39):19552-19562.
    Species: Virus - HPV
    Sample Types: Recombinant Protein
    Applications: Bioassay
  46. Uncoupling of p97 ATPase activity has a dominant negative effect on protein extraction
    Authors: HB Rycenga, KB Wolfe, ES Yeh, DT Long
    Sci Rep, 2019;9(1):10329.
    Species: Xenopus
    Sample Types: Egg Extract
    Applications: Bioassay
  47. Aryl Sulfonamides Degrade RBM39 and RBM23 by Recruitment to CRL4-DCAF15
    Authors: TC Ting, M Goralski, K Klein, B Wang, J Kim, Y Xie, D Nijhawan
    Cell Rep, 2019;29(6):1499-1510.e6.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  48. Mitochondria ubiquitin ligase, MARCH5 resolves hepatitis B virus X protein aggregates in the liver pathogenesis
    Authors: YS Yoo, YJ Park, HS Lee, NTK Oanh, MY Cho, J Heo, ES Lee, H Cho, YY Park, H Cho
    Cell Death Dis, 2019;10(12):938.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  49. Competitive ubiquitination activates the tumor suppressor p53
    Authors: X Li, M Guo, L Cai, T Du, Y Liu, HF Ding, H Wang, J Zhang, X Chen, C Yan
    Cell Death Differ., 2019;0(0):.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  50. Prp19/Pso4 Is an Autoinhibited Ubiquitin Ligase Activated by Stepwise Assembly of Three Splicing Factors
    Authors: TR de Moura, S Mozaffari-, CZK Szabó, J Schmitzová, O Dybkov, C Cretu, M Kachala, D Svergun, H Urlaub, R Lührmann, V Pena
    Mol. Cell, 2018;69(6):979-992.e6.
    Species: Bacteria
    Sample Types: Cell Lysates
    Applications: Bioassay
  51. Inhibition of UVSSA ubiquitination suppresses transcription-coupled nucleotide excision repair deficiency caused by dissociation from USP7
    Authors: M Higa, K Tanaka, M Saijo
    FEBS J., 2018;0(0):.
    Applications: Bioassay
  52. The E3 ubiquitin ligase Siah-1 suppresses avian reovirus infection by targeting p10 for degradation
    Authors: X Chen, Z He, M Fu, Y Wang, H Wu, X Li, H Cao, SJ Zheng
    J. Virol., 2018;0(0):.
    Applications: Bioassay
  53. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate
    Authors: ME Matyskiela, S Couto, X Zheng, G Lu, J Hui, K Stamp, C Drew, Y Ren, M Wang, A Carpenter, CW Lee, T Clayton, W Fang, CC Lu, M Riley, P Abdubek, K Blease, J Hartke, G Kumar, R Vessey, M Rolfe, LG Hamann, PP Chamberlai
    Nat. Chem. Biol., 2018;0(0):.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Ubiquitination
  54. MDM2-mediated degradation of WRN promotes cellular senescence in a p53-independent manner
    Authors: B Liu, J Yi, X Yang, L Liu, X Lou, Z Zhang, H Qi, Z Wang, J Zou, WG Zhu, W Gu, J Luo
    Oncogene, 2018;0(0):.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  55. Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome
    Authors: Y Dong, S Zhang, Z Wu, X Li, WL Wang, Y Zhu, S Stoilova-M, Y Lu, D Finley, Y Mao
    Nature, 2018;0(0):.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  56. XIAP facilitates breast and colon carcinoma growth via promotion of p62 depletion through ubiquitination-dependent proteasomal degradation
    Authors: X Huang, XN Wang, XD Yuan, WY Wu, PE Lobie, Z Wu
    Oncogene, 2018;0(0):.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  57. Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease
    Authors: X Hou, FC Fiesel, D Truban, M Castanedes, WL Lin, AI Soto, P Tacik, LG Rousseau, NN Diehl, MG Heckman, O Lorenzo-Be, I Ferrer, JM Arbelo, JC Steele, MJ Farrer, M Cornejo-Ol, L Torres, IF Mata, NR Graff-Radf, ZK Wszolek, OA Ross, ME Murray, DW Dickson, W Springer
    Autophagy, 2018;14(8):1404-1418.
    Applications: Bioassay
  58. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome
    Authors: KA Donovan, J An, RP Nowak, JC Yuan, EC Fink, BC Berry, BL Ebert, ES Fischer
    Elife, 2018;7(0):.
    Species: Human
    Sample Types: Protein
    Applications: Ubiquitination
  59. Discovery of Ubiquitin Deamidases in the Pathogenic Arsenal of Legionella pneumophila
    Authors: D Valleau, AT Quaile, H Cui, X Xu, E Evdokimova, C Chang, ME Cuff, ML Urbanus, S Houliston, CH Arrowsmith, AW Ensminger, A Savchenko
    Cell Rep, 2018;23(2):568-583.
    Applications: Bioassay
  60. CNPY2 inhibits MYLIP-mediated AR protein degradation in prostate cancer cells
    Authors: S Ito, A Ueno, T Ueda, H Nakagawa, H Taniguchi, N Kayukawa, A Fujihara-I, F Hongo, K Okihara, O Ukimura
    Oncotarget, 2018;9(25):17645-17655.
    Applications: Bioassay
  61. Identification and functional characterization of arginine vasopressin receptor 1A : atypical chemokine receptor 3 heteromers in vascular smooth muscle
    Authors: LJ Albee, HM LaPorte, X Gao, JM Eby, YH Cheng, AM Nevins, BF Volkman, V Gaponenko, M Majetschak
    Open Biol, 2018;8(1):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  62. BAP1 regulates IP3R3-mediated Ca(2+) flux to mitochondria suppressing cell transformation
    Authors: A Bononi, C Giorgi, S Patergnani, D Larson, K Verbruggen, M Tanji, L Pellegrini, V Signorato, F Olivetto, S Pastorino, M Nasu, A Napolitano, G Gaudino, P Morris, G Sakamoto, LK Ferris, A Danese, A Raimondi, C Tacchetti, S Kuchay, HI Pass, EB Affar, H Yang, P Pinton, M Carbone
    Nature, 2017;546(7659):549-553.
    Species: N/A
    Sample Types: Protein
    Applications: Bioassay
  63. DNA damage and S phase-dependent E2F1 stabilization requires the cIAP1 E3-ubiquitin ligase and is associated with K63-poly-ubiquitination on lysine 161/164 residues
    Authors: V Glorian, J Allègre, J Berthelet, B Dumetier, PM Boutanquoi, N Droin, C Kayaci, J Cartier, S Gemble, G Marcion, D Gonzalez, R Boidot, C Garrido, O Michaud, E Solary, L Dubrez
    Cell Death Dis, 2017;8(5):e2816.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  64. DNA damage and S phase-dependent E2F1 stabilization requires the cIAP1 E3-ubiquitin ligase and is associated with K63-poly-ubiquitination on lysine 161/164 residues
    Authors: V Glorian, J Allègre, J Berthelet, B Dumetier, PM Boutanquoi, N Droin, C Kayaci, J Cartier, S Gemble, G Marcion, D Gonzalez, R Boidot, C Garrido, O Michaud, E Solary, L Dubrez
    Cell Death Dis, 2017;8(5):e2816.
    Species: Bacteria - E. Coli
    Sample Types: Protein
    Applications: Bioassay
  65. HSPA5 negatively regulates lysosomal activity through ubiquitination of MUL1 in head and neck cancer
    Authors: SY Kim, HJ Kim, HJ Kim, DH Kim, CH Kim, JH Han, HK Byeon, K Lee
    Autophagy, 2017;0(0):1-89.
    Species: Human
    Sample Types: Cell Lysates
    Applications: Bioassay
  66. A20 regulates the DNA damage response and mediates tumor cell resistance to DNA damaging therapy
    Authors: C Yang, W Zang, Z Tang, Y Ji, R Xu, Y Yang, A Luo, B Hu, Z Zhang, Z Liu, X Zheng
    Cancer Res., 2017;0(0):.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  67. H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis
    Authors: X Zhang, B Li, AH Rezaeian, X Xu, PC Chou, G Jin, F Han, BS Pan, CY Wang, J Long, A Zhang, CY Huang, FJ Tsai, CH Tsai, C Logothetis, HK Lin
    Nat Commun, 2017;8(0):14799.
    Species: N/A
    Sample Types: Recombinant Protein
    Applications: Bioassay
  68. RFWD3-Mediated Ubiquitination Promotes Timely Removal of Both RPA and RAD51 from DNA Damage Sites to Facilitate Homologous Recombination
    Authors: S Inano, K Sato, Y Katsuki, W Kobayashi, H Tanaka, K Nakajima, S Nakada, H Miyoshi, K Knies, A Takaori-Ko, D Schindler, M Ishiai, H Kurumizaka, M Takata
    Mol. Cell, 2017;66(5):622-634.e8.
    Species: Human
    Sample Types: Protein
    Applications: Enzyme Assay
  69. Ubiquitination and regulation of AURKA identifies a hypoxia-independent E3 ligase activity of VHL
    Authors: E Hasanov, G Chen, P Chowdhury, J Weldon, Z Ding, E Jonasch, S Sen, CL Walker, R Dere
    Oncogene, 2017;0(0):.
    Species: N/A
    Sample Types: Protein
    Applications: Ubiquitination
  70. The Nedd8 Non-covalent Binding Region in the Smurf HECT Domain is Critical to its Ubiquitn Ligase Function
    Authors: S He, Y Cao, P Xie, G Dong, L Zhang
    Sci Rep, 2017;7(0):41364.
    Species: Human
    Sample Types: Cell Lysates
    Applications: Bioassay
  71. Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex
    Authors: NO Bodnar, TA Rapoport
    Cell, 2017;169(4):722-735.e9.
    Applications: Bioassay
  72. Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis Thaliana By Promoting Nuclear Proteasome-Mediated HY5 Degradation
    Authors: C Perea-Resa, MA Rodríguez-, E Iniesto, V Rubio, J Salinas
    Mol Plant, 2017;0(0):.
    Applications: Bioassay
  73. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response
    Authors: Q Wang, L Huang, Z Hong, Z Lv, Z Mao, Y Tang, X Kong, S Li, Y Cui, H Liu, L Zhang, X Zhang, L Jiang, C Wang, Q Zhou
    PLoS Pathog, 2017;13(3):e1006264.
    Species: N/A
    Sample Types: Protein
    Applications: Bioassay
  74. pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4(CRBN) ubiquitin ligase
    Authors: J An, CM Ponthier, R Sack, J Seebacher, MB Stadler, KA Donovan, ES Fischer
    Nat Commun, 2017;8(0):15398.
    Species: N/A
    Sample Types: Protein
    Applications: Bioassay
  75. Development of ?-Hairpin Peptides for the Measurement of SCF-Family E3 Ligase Activity in Vitro via Ornithine Ubiquitination
    Authors: KM Houston, AT Melvin, GS Woss, EL Fayer, ML Waters, NL Allbritton
    ACS Omega, 2017;2(3):1198-1206.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  76. In vitro characterization of six STUB1 variants in spinocerebellar ataxia 16 reveals altered structural properties for the encoded CHIP proteins
    Authors: Y Pakdaman, M Sanchez-Gu, R Kleppe, S Erdal, HJ Bustad, L Bjørkhaug, K Haugarvoll, C Tzoulis, K Heimdal, PM Knappskog, S Johansson, I Aukrust
    Biosci. Rep., 2017;37(2):.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  77. RNF11 sequestration of the E3 ligase SMURF2 on membranes antagonizes SMAD7 down-regulation of transforming growth factor ? signaling
    Authors: RJ Malonis, W Fu, MJ Jelcic, M Thompson, BS Canter, M Tsikitis, FJ Esteva, I Sánchez
    J. Biol. Chem., 2017;292(18):7435-7451.
    Applications: Bioassay
  78. RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage
    Authors: A Paul, B Wang
    Mol. Cell, 2017;66(4):458-472.e5.
    Applications: Bioassay
  79. Distinct kinetics of serine and threonine dephosphorylation are essential for mitosis
    Authors: JB Hein, EPT Hertz, DH Garvanska, T Kruse, J Nilsson
    Nat. Cell Biol., 2017;19(12):1433-1440.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  80. Negative regulation of the RLH signaling by the E3 ubiquitin ligase RNF114
    Authors: B Lin, Q Ke, H Li, NS Pheifer, DC Velliquett, DW Leaman
    Cytokine, 2017;0(0):.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  81. In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing
    Authors: BA Osuna, CJ Howard, S Kc, A Frost, DE Weinberg
    Elife, 2017;6(0):.
    Species: Yeast - Saccharomyces cerevisiae
    Sample Types: RNA
    Applications: Bioassay
  82. The Banana Fruit SINA Ubiquitin Ligase MaSINA1 Regulates the Stability of MaICE1 to be Negatively Involved in Cold Stress Response
    Authors: ZQ Fan, JY Chen, JF Kuang, WJ Lu, W Shan
    Front Plant Sci, 2017;8(0):995.
    Applications: Bioassay
  83. Inhibition of the deubiquitinase USP5 leads to c-Maf protein degradation and myeloma cell apoptosis
    Authors: S Wang, J Juan, Z Zhang, Y Du, Y Xu, J Tong, B Cao, MF Moran, Y Zeng, X Mao
    Cell Death Dis, 2017;8(9):e3058.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  84. An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons
    Authors: M Boselli, BH Lee, J Robert, MA Prado, SW Min, C Cheng, MC Silva, C Seong, S Elsasser, KM Hatle, TC Gahman, SP Gygi, SJ Haggarty, L Gan, RW King, D Finley
    J. Biol. Chem., 2017;0(0):.
    Species: Human
    Sample Types: Protein
    Applications: Enzyme Assay
  85. Plk1 phosphorylation of CAP-H2 triggers chromosome condensation by condensin II at the early phase of mitosis
    Authors: Y Kagami, M Ono, K Yoshida
    Sci Rep, 2017;7(1):5583.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  86. TRIM65-catalized ubiquitination is essential for MDA5-mediated antiviral innate immunity
    Authors: Xueting Lang
    J. Exp. Med, 2016;0(0):.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  87. Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to degrade NOXA via the K11 linkage
    Clin Cancer Res, 2016;0(0):.
    Species: Human
    Sample Types: Protein
    Applications: Ubiquitination
  88. Monoubiquitination Inhibits the Actin Bundling Activity of Fascin
    Authors: Shengyu Yang
    J. Biol. Chem., 2016;0(0):.
    Applications: Bioassay
  89. Regulation of the MDM2-p53 pathway by the nucleolar protein CSIG in response to nucleolar stress
    Sci Rep, 2016;6(0):36171.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  90. Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles
    EMBO J, 2016;0(0):.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  91. FBXW7 Facilitates Nonhomologous End-Joining via K63-Linked Polyubiquitylation of XRCC4
    Authors: Q Zhang, D Karnak, M Tan, TS Lawrence, MA Morgan, Y Sun
    Mol. Cell, 2016;61(3):419-33.
    Species: Human
    Sample Types: Recombinant Protein
    Applications: Bioassay
  92. Structural insights into Parkin substrate lysine targeting from minimal Miro substrates
    Sci Rep, 2016;6(0):33019.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  93. A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase
    Authors: Mary E Matyskiela
    Nature, 2016;0(0):.
    Species: N/A
    Sample Types: Protein
    Applications: Bioassay
  94. Role of SUMO activating enzyme in cancer stem cell maintenance and self-renewal
    Nat Commun, 2016;7(0):12326.
    Species: N/A
    Sample Types: Recombinant Protein
    Applications: Bioassay
  95. Ubiquitin-conjugating enzyme Cdc34 and ubiquitin ligase Skp1-cullin-F-box ligase (SCF) interact through multiple conformations.
    Authors: Sandoval D, Hill S, Ziemba A, Lewis S, Kuhlman B, Kleiger G
    J Biol Chem, 2015;290(2):1106-18.
    Species: Bacteria - E. Coli
    Sample Types: Whole Cells
  96. An anti-ubiquitin antibody response in transitional cell carcinoma of the urinary bladder.
    Authors: Ardelt P, Ebbing J, Adams F, Reiss C, Arap W, Pasqualini R, Bachmann A, Wetterauer U, Riedmiller H, Kneitz B
    PLoS ONE, 2015;10(3):e0118646.
    Species: Human
    Sample Types: Serum
    Applications: ELISA
  97. Stochastic gate dynamics regulate the catalytic activity of ubiquitination enzymes.
    Authors: Rout, Manoj K, Hodge, Curtis D, Markin, Craig J, Xu, Xin, Glover, J N Mark, Xiao, Wei, Spyracopoulos, Leo
    J Am Chem Soc, 2014;136(50):17446-58.
    Species: N/A
    Sample Types: Protein
    Applications: Bioassay
  98. Dimeric Ube2g2 simultaneously engages donor and acceptor ubiquitins to form Lys48-linked ubiquitin chains.
    Authors: Liu, Weixiao, Shang, Yonglian, Zeng, Yan, Liu, Chao, Li, Yanchang, Zhai, Linhui, Wang, Pan, Lou, Jizhong, Xu, Ping, Ye, Yihong, Li, Wei
    EMBO J, 2014;33(1):46-61.
    Species: N/A
    Sample Types: Recombinant Protein
    Applications: Bioassay
  99. The spindle and kinetochore-associated (Ska) complex enhances binding of the anaphase-promoting complex/cyclosome (APC/C) to chromosomes and promotes mitotic exit.
    Authors: Sivakumar, Sushama, Daum, John R, Tipton, Aaron R, Rankin, Susannah, Gorbsky, Gary J
    Mol Biol Cell, 2014;25(5):594-605.
    Species: Human
    Sample Types: Cell Lysates
    Applications: Bioassay
  100. Pin1 modulates ERalpha levels in breast cancer through inhibition of phosphorylation-dependent ubiquitination and degradation.
    Authors: Rajbhandari P, Schalper K, Solodin N, Ellison-Zelski S, Ping Lu K, Rimm D, Alarid E
    Oncogene, 2014;33(11):1438-47.
    Species: N/A
    Sample Types: Recombinant Protein
    Applications: Bioassay
  101. Cellular inhibitor of apoptosis (cIAP)-mediated ubiquitination of phosphofurin acidic cluster sorting protein 2 (PACS-2) negatively regulates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity.
    Authors: Guicciardi, Maria Eu, Werneburg, Nathan W, Bronk, Steven F, Franke, Adrian, Yagita, Hideo, Thomas, Gary, Gores, Gregory
    PLoS ONE, 2014;9(3):e92124.
    Species: N/A
    Sample Types: Recombinant Protein
    Applications: Bioassay
  102. The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2.
    Authors: Townley-Tilson, W H Davi, Wu, Yaxu, Ferguson, James E, Patterson, Cam
    PLoS ONE, 2014;9(2):e89451.
    Species: Human
    Sample Types: Whole Cells
    Applications: Ubiquitination
  103. A pathogen type III effector with a novel E3 ubiquitin ligase architecture.
    Authors: Singer, Alexande, Schulze, Sebastia, Skarina, Tatiana, Xu, Xiaohui, Cui, Hong, Eschen-Lippold, Lennart, Egler, Monique, Srikumar, Tharan, Raught, Brian, Lee, Justin, Scheel, Dierk, Savchenko, Alexei, Bonas, Ulla
    PLoS Pathog, 2013;9(1):e1003121.
    Species: N/A
    Sample Types: Recombinant Protein
    Applications: Bioassay
  104. CXC chemokine receptor 4 signaling upon co-activation with stromal cell-derived factor-1alpha and ubiquitin.
    Authors: Tripathi A, Davis J, Staren D, Volkman B, Majetschak M
    Cytokine, 2013;65(2):121-5.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  105. Ubiquitination increases parkin activity to promote autophagic alpha-synuclein clearance.
    Authors: Lonskaya I, Desforges N, Hebron M, Moussa C
    PLoS ONE, 2013;8(12):e83914.
    Species: N/A
    Sample Types: Recombinant Protein
    Applications: Enzyme Assay
  106. Parkin ubiquitinates Tar-DNA binding protein-43 (TDP-43) and promotes its cytosolic accumulation via interaction with histone deacetylase 6 (HDAC6).
    Authors: Hebron, Michaeli, Lonskaya, Irina, Sharpe, Kaydee, Weerasinghe, Puwakdan, Algarzae, Norah K, Shekoyan, Ashot R, Moussa, Charbel
    J Biol Chem, 2013;288(6):4103-15.
    Species: N/A
    Sample Types: Recombinant Protein
    Applications: Bioassay
  107. p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO.
    Authors: Shibata Y, Oyama M, Kozuka-Hata H, Han X, Tanaka Y, Gohda J, Inoue J
    Nat Commun, 2012;3(0):1061.
    Species: N/A
    Sample Types: Recombinant Protein
    Applications: Binding Assay
  108. The F-box protein FBXO44 mediates BRCA1 ubiquitination and degradation.
    Authors: Lu, Yunzhe, Li, Jiezhi, Cheng, Dongmei, Parameswaran, Balaji, Zhang, Shaohua, Jiang, Zefei, Yew, P Renee, Peng, Junmin, Ye, Qinong, Hu, Yanfen
    J Biol Chem, 2012;287(49):41014-22.
    Species: N/A
    Sample Types: Recombinant Protein
    Applications: Ubiquitination
  109. The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation.
    Authors: Foster S, Morgan D
    Mol Cell, 2012;47(6):921-32.
    Species: N/A
    Sample Types: Protein
    Applications: Bioassay
  110. ERalpha phosphorylation at Y537 by Src triggers E6-AP-ERalpha binding, ERalpha ubiquitylation, promoter occupancy, and target gene expression.
    Authors: Sun J, Zhou W, Kaliappan K, Nawaz Z, Slingerland J
    Mol Endocrinol, 2012;26(9):1567-77.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  111. Characterization of ML-IAP protein stability and physiological role in vivo.
    Authors: Varfolomeev, Eugene, Moradi, Elham, Dynek, Jasmin N, Zha, Jiping, Fedorova, Anna V, Deshayes, Kurt, Fairbrother, Wayne J, Newton, Kim, Le Couter, Jennifer, Vucic, Domagoj
    Biochem J, 2012;447(3):427-36.
    Species: Human
    Sample Types: Protein
    Applications: Bioassay
  112. DNA damage-induced heterogeneous nuclear ribonucleoprotein K sumoylation regulates p53 transcriptional activation.
    Authors: Pelisch F, Pozzi B, Risso G, Munoz M, Srebrow A
    J Biol Chem, 2012;287(36):30789-99.
    Species: N/A
    Sample Types: Protein
    Applications: Bioassay

FAQs

  1. Which aqueous solution can be used to reconsitute Recombinant Human Ubiquitin Protein, CF (Catalog # U-100H)?

    • In house, we reconstitute the lyophilized Recombinant Human Ubiquitin Protein, CF (Catalog # U-100H) using deionized water. In order to allow end-users to select the optimal buffer for their experiments, there are other aqueous solutions that can work (e.g. PBS).

  2. What is the endotoxin level for Recombinant Human Ubiquitin Protein, CF (Catalog # U-100H)?

    • Recombinant Human Ubiquitin (Catalog # U-100H) is designed for in vitro applications and has not been evaluated in vivo or cell-based applications. If endotoxin is of concern for your assay, please contact our Custom Services group to see if custom manfuacture and/or endotoxin testing is an option.

View all Proteins and Enzyme FAQs

Reconstitution Buffers

Reviews for Recombinant Human Ubiquitin Protein, CF

Average Rating: 5 (Based on 2 Reviews)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%

Have you used Recombinant Human Ubiquitin Protein, CF?

Submit a review and receive an Amazon gift card.

$25/€18/£15/$25CAN/¥75 Yuan/¥1250 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review

Filter by:


Recombinant Human Ubiquitin Protein, CF
By Patrick Chuong on 03/18/2019
Application: Enzymatic activity in vitro
Reason for Rating: Ubiquitin works great for auto-ubiquitination assays

Used in standard E1, E2, E3, ATP, Ubiquitin assays done in gel


Recombinant Human Ubiquitin Protein, CF
By Anonymous on 10/20/2017
Application: Enzymatic activity in vitro