Recombinant Mouse R-Spondin 1 Protein, CF

Newer Version Available: 7150-RS/CF
NEW
A New rm R-Spondin 1 is Available! CHO expressed; ~5 fold better activity; Enhanced purity!
Catalog # Availability Size / Price Qty
3474-RS-050
3474-RS-01M
3474-RS-250
Recombinant Mouse R-Spondin 1 Protein Bioactivity
2 Images
Product Details
Citations (47)
FAQs
Supplemental Products
Reviews (5)

Recombinant Mouse R-Spondin 1 Protein, CF Summary

Product Specifications

Purity
>90%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.
Endotoxin Level
<0.10 EU per 1 μg of the protein by the LAL method.
Activity
Measured by its ability to induce Topflash reporter activity in HEK293T human embryonic kidney cells. The typical ED50 is 50-200 ng/mL in the presence of 5 ng/mL recombinant mouse Wnt-3a.
Source
E. coli-derived mouse R-Spondin 1 protein
Ser21-Gly209, with an N-terminal Met
Accession #
N-terminal Sequence
Analysis
Met
Predicted Molecular Mass
21 kDa

Product Datasheets

Carrier Free

What does CF mean?

CF stands for Carrier Free (CF). We typically add Bovine Serum Albumin (BSA) as a carrier protein to our recombinant proteins. Adding a carrier protein enhances protein stability, increases shelf-life, and allows the recombinant protein to be stored at a more dilute concentration. The carrier free version does not contain BSA.

What formulation is right for me?

In general, we advise purchasing the recombinant protein with BSA for use in cell or tissue culture, or as an ELISA standard. In contrast, the carrier free protein is recommended for applications, in which the presence of BSA could interfere.

3474-RS

Formulation Lyophilized from a 0.2 μm filtered solution in PBS.
Reconstitution Reconstitute at 250 μg/mL in sterile PBS.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
  • 12 months from date of receipt, -20 to -70 °C as supplied.
  • 1 month, 2 to 8 °C under sterile conditions after reconstitution.
  • 3 months, -20 to -70 °C under sterile conditions after reconstitution.

Data Images

Bioactivity Recombinant Mouse R-Spondin 1 Protein Bioactivity View Larger

Recombinant Mouse R-Spondin 1 (Catalog # 3474-RS) induces activation of beta -catenin response in a Topflash Luciferase assay using HEK293T human embryonic kidney cells. The ED50 for this effect is 50-200 ng/mL in the presence of 5 ng/mL of Recombinant Mouse Wnt-3a (Catalog # 1324-WN).

SDS-PAGE Recombinant Mouse R-Spondin 1 Protein SDS-PAGE View Larger

1 μg/lane of Recombinant Mouse R-Spondin-1 was resolved with SDS-PAGE under reducing (R) conditions and visualized by silver staining, showing a single band at 24 kDa.

Reconstitution Calculator

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Background: R-Spondin 1

R-Spondin 1 (RSPO1, Roof plate-specific Spondin 1), also known as cysteine-rich and single thrombospondin domain containing protein 3 (Cristin 3), is a 27 kDa secreted protein that shares ~40% amino acid (aa) identity with three other R-Spondin family members (1, 2). All R-Spondins regulate Wnt/ beta-Catenin signaling but have distinct expression patterns (1-3). R-Spondin 1 competes with the Wnt antagonist DKK-1 for binding to the Wnt co-receptors, Kremen and LRP-6, reducing their DKK-1-mediated internalization (4). However, reports are mixed on whether R-Spondin 1 binds LRP-6 directly (4-6). R-Spondin 1 is expressed in early development at the roof plate boundary and is thought to contribute to dorsal neural tube development (3, 7). In humans, rare disruptions of the R-Spondin 1 gene are associated with tendencies for XX sex reversal (phenotypic male) or hermaphroditism, indicating a role for R-Spondin 1 in gender-specific differentiation (7, 8). Mutations in R-Spondin 1 are also linked with palmoplantar keratoderma, abnormal thickening of the skin on the palms of the hands and soles of the feet (7, 8). Postnatally, R-Spondin 1 is expressed by neuroendocrine cells in the intestine, adrenal gland and pancreas, and by epithelia in kidney and prostate (9). Injection of recombinant R-Spondin 1 in mice causes activation of beta-catenin and proliferation of intestinal crypt epithelial cells, and ameliorates experimental colitis (9, 10). Interest in R-Spondin 1 as a cell culture supplement has grown with the expansion of the organoid field. R-Spondin 1 is widely used in organoid cell culture workflows as a vital component that promotes both growth and survival of 3D organoids (11).

Structurally similar to other R-Spondins, R-Spondin 1 contains two adjacent cysteine-rich furin-like domains (aa 34-135) with one potential N-glycosylation site, followed by a thrombospondin (TSP-1) motif (aa 147-207) and a region rich in basic residues (aa 211-263). Only the furin-like domains are needed for beta-catenin stabilization (2, 12). A putative nuclear localization signal at the C-terminus may allow some expression in the nucleus (13). Mouse R‑Spondin 1 shares 98%, 94%, 94%, 93%, 92% and 88% aa identity with rat, human, horse, cow, goat and dog RSPO-1, respectively, within aa 21‑209.

References
  1. Chen, J-Z. et al. (2002) Mol. Biol. Rep. 29:287.
  2. Kim, K.-A. et al. (2006) Cell Cycle 5:23.
  3. Nam, J.-S. et al. (2007) Gene Expr. Patterns 7:306.
  4. Binnerts, M.E. et al. (2007) Proc. Natl. Acad. Sci. USA 104:14700.
  5. Nam, J.-S. et al. (2006) J. Biol. Chem. 281:13247.
  6. Wei, Q. et al. (2007) J. Biol. Chem. 282:15903.
  7. Kamata, T. et al. (2004) Biochim. Biophys. Acta 1676:51.
  8. Parma, P. et al. (2006) Nat. Genet. 38:1304.
  9. Kim, K.-A. et al. (2005) Science 309:1256.
  10. Zhao, J. et al. (2007) Gastroenterology 132:1331.
  11. Drost and Clevers. (2018) Nature Reviews Cancer 18:407.
  12. Kazanskaya, O. et al. (2004) Dev. Cell 7:525.
  13. Tomaselli, S. et al. (2008) Hum. Mutat. 29:220.
Long Name
Roof Plate-specific Spondin 1
Entrez Gene IDs
284654 (Human); 192199 (Mouse); 102122369 (Cynomolgus Monkey)
Alternate Names
Cristin 3; CRISTIN3; FLJ40906Roof plate-specific spondin-1; HRspo1; roof plate-specific spondin; RSPO; RSPO1; RSpondin 1; R-Spondin 1; R-spondin homolog (Xenopus laevis); RSPONDIN; R-spondin1; R-spondin-1

Citations for Recombinant Mouse R-Spondin 1 Protein, CF

R&D Systems personnel manually curate a database that contains references using R&D Systems products. The data collected includes not only links to publications in PubMed, but also provides information about sample types, species, and experimental conditions.

47 Citations: Showing 1 - 10
Filter your results:

Filter by:

  1. Propionate Enhances Cell Speed and Persistence to Promote Intestinal Epithelial Turnover and Repair
    Authors: AJ Bilotta, C Ma, W Yang, Y Yu, Y Yu, X Zhao, Z Zhou, S Yao, SM Dann, Y Cong
    Cell Mol Gastroenterol Hepatol, 2020;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Cell Culture
  2. Tp63-expressing adult epithelial stem cells cross lineages boundaries revealing latent hairy skin competence
    Authors: S Claudinot, JI Sakabe, H Oshima, C Gonneau, T Mitsiadis, D Littman, P Bonfanti, G Martens, M Nicolas, A Rochat, Y Barrandon
    Nat Commun, 2020;11(1):5645.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Cell Culture
  3. LSD1 represses a neonatal/reparative gene program in adult intestinal epithelium
    Authors: RT Zwiggelaar, HT Lindholm, M Fosslie, M Terndrup P, Y Ohta, A Díez-Sánch, M Martín-Alo, J Ostrop, M Matano, N Parmar, E Kvaløy, RR Spanjers, K Nazmi, M Rye, F Drabløs, C Arrowsmith, J Arne Dahl, KB Jensen, T Sato, MJ Oudhoff
    Science Advances, 2020;6(37):.
    Species: Mouse
    Sample Types: Organoid
    Applications: Bioassay
  4. Volumetric Compression Induces Intracellular Crowding to Control Intestinal Organoid Growth via Wnt/&beta-Catenin Signaling
    Authors: Y Li, M Chen, J Hu, R Sheng, Q Lin, X He, M Guo
    Cell Stem Cell, 2020;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  5. Targeting the Wnt signaling pathway through R-spondin 3 identifies an anti-fibrosis treatment strategy for multiple organs
    Authors: M Zhang, M Haughey, NY Wang, K Blease, AM Kapoun, S Couto, I Belka, T Hoey, M Groza, J Hartke, B Bennett, J Cain, A Gurney, B Benish, P Castiglion, C Drew, J Lachowicz, L Carayannop, SD Nathan, J Distler, DA Brenner, K Hariharan, H Cho, W Xie
    PLoS ONE, 2020;15(3):e0229445.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: IHC Control
  6. Wnt Signaling Protects against Paclitaxel-Induced Spiral Ganglion Neuron Damage in the Mouse Cochlea In Vitro
    Authors: X Wang, Y Han, M Wang, C Bo, Z Zhang, L Xu, W Liu, H Wang
    Biomed Res Int, 2019;2019(0):7878906.
    Species: Mouse
    Sample Types: Tissue Explants
    Applications: Tissue Culture
  7. Enteroendocrine progenitor cell enriched miR-7 regulates intestinal epithelial proliferation in an Xiap-dependent manner
    Authors: AP Singh, YH Hung, MT Shanahan, M Kanke, A Bonfini, MK Dame, M Biraud, BCE Peck, OO Oyesola, JM Freund, RL Cubitt, EG Curry, LM Gonzalez, GA Bewick, ED Tait-Wojno, NA Kurpios, S Ding, JR Spence, CM Dekaney, N Buchon, P Sethupathy
    Cell Mol Gastroenterol Hepatol, 2019;0(0):.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Tissue Culture
  8. Tight junction protein claudin-7 is essential for intestinal epithelial stem cell self-renewal and differentiation
    Authors: T Xing, LJ Benderman, S Sabu, J Parker, J Yang, Q Lu, L Ding, YH Chen
    Cell Mol Gastroenterol Hepatol, 2019;0(0):.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Organoid Culture
  9. Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals
    Authors: T Yung, F Poon, M Liang, S Coquenlorg, EC McGaugh, CC Hui, MD Wilson, MC Nostro, TH Kim
    Nat Commun, 2019;10(1):4647.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  10. Distinct CRC-associated APC mutations dictate response to Tankyrase inhibition
    Authors: EM Schatoff, S Goswami, MP Zafra, M Foronda, M Shusterman, BI Leach, A Katti, BJ Diaz, LE Dow
    Cancer Discov, 2019;0(0):.
    Species: Mouse
    Sample Types: Tissue Homogenates
    Applications: Tissue Culture
  11. Molecular determinants of WNT9b responsiveness in nephron progenitor cells
    Authors: KK Dickinson, LC Hammond, CM Karner, ND Hastie, TJ Carroll, P Goodyer
    PLoS ONE, 2019;14(4):e0215139.
    Species: Mouse
    Sample Types: cell culture
    Applications: TOPflash assay
  12. The atypical antipsychotic quetiapine induces hyperlipidemia by activating intestinal PXR signaling
    Authors: Z Meng, T Gwag, Y Sui, SH Park, X Zhou, C Zhou
    JCI Insight, 2019;4(3):.
    Species: Mouse
    Sample Types: Enteroid
    Applications: Bioassay
  13. Characterization of the enhancer and promoter landscape of inflammatory bowel disease from human colon biopsies
    Authors: M Boyd, M Thodberg, M Vitezic, J Bornholdt, K Vitting-Se, Y Chen, M Coskun, Y Li, BZS Lo, P Klausen, P Jan Schwei, AG Pedersen, N Rapin, K Skovgaard, K Dahlgaard, R Andersson, TB Terkelsen, B Lilje, JT Troelsen, AM Petersen, KB Jensen, I Gögenur, P Thielsen, JB Seidelin, OH Nielsen, JT Bjerrum, A Sandelin
    Nat Commun, 2018;9(1):1661.
    Species: Human
    Sample Types: Organoids
    Applications: Bioassay
  14. Development of a functional thyroid model based on an organoid culture system
    Authors: Y Saito, N Onishi, H Takami, R Seishima, H Inoue, Y Hirata, K Kameyama, K Tsuchihash, E Sugihara, S Uchino, K Ito, H Kawakubo, H Takeuchi, Y Kitagawa, H Saya, O Nagano
    Biochem. Biophys. Res. Commun., 2018;0(0):.
    Species: Mouse
    Sample Types: Whole Cell
    Applications: Bioassay
  15. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis
    Authors: MJ Kim, B Xia, HN Suh, SH Lee, S Jun, EM Lien, J Zhang, K Chen, JI Park
    Dev. Cell, 2018;44(5):582-596.e4.
    Species: Mouse
    Sample Types: Organoid
    Applications: Bioassay
  16. Neutrophils Promote Amphiregulin Production in Intestinal Epithelial Cells through TGF-? and Contribute to Intestinal Homeostasis
    Authors: F Chen, W Yang, X Huang, AT Cao, AJ Bilotta, Y Xiao, M Sun, L Chen, C Ma, X Liu, CG Liu, S Yao, SM Dann, Z Liu, Y Cong
    J. Immunol., 2018;0(0):.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  17. YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration
    Authors: S Yui, L Azzolin, M Maimets, MT Pedersen, RP Fordham, SL Hansen, HL Larsen, J Guiu, MRP Alves, CF Rundsten, JV Johansen, Y Li, CD Madsen, T Nakamura, M Watanabe, OH Nielsen, PJ Schweiger, S Piccolo, KB Jensen
    Cell Stem Cell, 2018;22(1):35-49.e7.
    Species: Mouse
    Sample Types: Complex Sample Type
    Applications: Bioassay
  18. Monoclonal Antibodies Reveal Dynamic Plasticity Between Lgr5-�and Bmi1-Expressing Intestinal Cell Populations
    Authors: NR Smith, JR Swain, PS Davies, AC Gallagher, MS Parappilly, CZ Beach, PR Streeter, IA Williamson, ST Magness, MH Wong
    Cell Mol Gastroenterol Hepatol, 2018;6(1):79-96.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  19. The Coordinated Activities of nAChR and Wnt Signaling Regulate Intestinal Stem Cell Function in Mice
    Authors: T Takahashi, A Shiraishi, J Murata
    Int J Mol Sci, 2018;19(3):.
    Species: Mouse
    Sample Types: Complex Sample Type
    Applications: Bioassay
  20. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells
    Authors: EC Moorefield, SF Andres, RE Blue, L Van Landeg, AT Mah, MA Santoro, S Ding
    Aging (Albany NY), 2017;9(8):1898-1915.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  21. Organotypic pancreatoids with native mesenchyme develop Insulin producing endocrine cells
    Authors: MA Scavuzzo, D Yang, M Borowiak
    Sci Rep, 2017;7(1):10810.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  22. In Vitro Polarization of Colonoids to Create an Intestinal Stem Cell Compartment
    Authors: PJ Attayek, AA Ahmad, Y Wang, I Williamson, CE Sims, ST Magness, NL Allbritton
    PLoS ONE, 2016;11(4):e0153795.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  23. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage.
    Authors: Barrett C, Reddy V, Short S, Motley A, Lintel M, Bradley A, Freeman T, Vallance J, Ning W, Parang B, Poindexter S, Fingleton B, Chen X, Washington M, Wilson K, Shroyer N, Hill K, Burk R, Williams C
    J Clin Invest, 2015;125(7):2646-60.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  24. Inducible in vivo genome editing with CRISPR-Cas9.
    Authors: Dow, Lukas E, Fisher, Jonathan, O'Rourke, Kevin P, Muley, Ashlesha, Kastenhuber, Edward R, Livshits, Geulah, Tschaharganeh, Darjus F, Socci, Nicholas, Lowe, Scott W
    Nat Biotechnol, 2015;33(4):390-4.
    Species: Mouse
    Sample Types: Tissue Homogenates
    Applications: Bioassay
  25. R-spondin 1/dickkopf-1/beta-catenin machinery is involved in testicular embryonic angiogenesis.
    Authors: Caruso M, Ferranti F, Corano Scheri K, Dobrowolny G, Ciccarone F, Grammatico P, Catizone A, Ricci G
    PLoS ONE, 2015;10(4):e0124213.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  26. Convergence of cMyc and beta-catenin on Tcf7l1 enables endoderm specification.
    Authors: Morrison G, Scognamiglio R, Trumpp A, Smith A
    EMBO J, 2015;35(3):356-68.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  27. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch.
    Authors: Lopez-Arribillaga E, Rodilla V, Pellegrinet L, Guiu J, Iglesias M, Roman A, Gutarra S, Gonzalez S, Munoz-Canoves P, Fernandez-Salguero P, Radtke F, Bigas A, Espinosa L
    Development, 2015;142(1):41-50.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  28. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure.
    Authors: Calderon-Gierszal E, Prins G
    PLoS ONE, 2015;10(7):e0133238.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay
  29. Compartmentalized accumulation of cAMP near complexes of multidrug resistance protein 4 (MRP4) and cystic fibrosis transmembrane conductance regulator (CFTR) contributes to drug-induced diarrhea.
    Authors: Moon C, Zhang W, Ren A, Arora K, Sinha C, Yarlagadda S, Woodrooffe K, Schuetz J, Valasani K, de Jonge H, Shanmukhappa S, Shata M, Buddington R, Parthasarathi K, Naren A
    J Biol Chem, 2015;290(18):11246-57.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  30. beta-Catenin is required for hair-cell differentiation in the cochlea.
    Authors: Shi F, Hu L, Jacques B, Mulvaney J, Dabdoub A, Edge A
    J Neurosci, 2014;34(19):6470-9.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  31. An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy.
    Authors: Bohorquez D, Samsa L, Roholt A, Medicetty S, Chandra R, Liddle R
    PLoS ONE, 2014;9(2):e89881.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  32. The ErbB4 ligand neuregulin-4 protects against experimental necrotizing enterocolitis.
    Authors: McElroy S, Castle S, Bernard J, Almohazey D, Hunter C, Bell B, Al Alam D, Wang L, Ford H, Frey M
    Am J Pathol, 2014;184(10):2768-78.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  33. Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-beta.
    Authors: Wiener Z, Band A, Kallio P, Hogstrom J, Hyvonen V, Kaijalainen S, Ritvos O, Haglund C, Kruuna O, Robine S, Louvard D, Ben-Neriah Y, Alitalo K
    Proc Natl Acad Sci U S A, 2014;111(21):E2229-36.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  34. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice.
    Authors: Jurk D, Wilson C, Passos J, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G, Pender S, Fullard N, Nelson G, Mann J, van de Sluis B, Mann D, von Zglinicki T
    Nat Commun, 2014;2(0):4172.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  35. Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome.
    Authors: Takemura N, Kawasaki T, Kunisawa J, Sato S, Lamichhane A, Kobiyama K, Aoshi T, Ito J, Mizuguchi K, Karuppuchamy T, Matsunaga K, Miyatake S, Mori N, Tsujimura T, Satoh T, Kumagai Y, Kawai T, Standley D, Ishii K, Kiyono H, Akira S, Uematsu S
    Nat Commun, 2014;5(0):3492.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  36. Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon.
    Authors: Fukuda M, Mizutani T, Mochizuki W, Matsumoto T, Nozaki K, Sakamaki Y, Ichinose S, Okada Y, Tanaka T, Watanabe M, Nakamura T
    Genes Dev, 2014;28(16):1752-7.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  37. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1.
    Authors: Mah, Amanda T, Van Landeghem, Lauriann, Gavin, Hannah E, Magness, Scott T, Lund, P Kay
    Endocrinology, 2014;155(9):3302-14.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  38. In vitro multilineage differentiation and self-renewal of single pancreatic colony-forming cells from adult C57BL/6 mice.
    Authors: Jin, Liang, Feng, Tao, Zerda, Ricardo, Chen, Ching-Ch, Riggs, Arthur D, Ku, Hsun Ter
    Stem Cells Dev, 2014;23(8):899-909.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  39. Proinflammatory cytokine-induced tight junction remodeling through dynamic self-assembly of claudins.
    Authors: Capaldo C, Farkas A, Hilgarth R, Krug S, Wolf M, Benedik J, Fromm M, Koval M, Parkos C, Nusrat A
    Mol Biol Cell, 2014;25(18):2710-9.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  40. Luminal microbes promote monocyte-stem cell interactions across a healthy colonic epithelium.
    Authors: Skoczek D, Walczysko P, Horn N, Parris A, Clare S, Williams M, Sobolewski A
    J Immunol, 2014;193(1):439-51.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  41. LGR4 and its ligands, R-spondin 1 and R-spondin 3, regulate food intake in the hypothalamus of male rats.
    Authors: Li, Ji-Yao, Chai, Biaoxin, Zhang, Weizhen, Fritze, Danielle, Zhang, Chao, Mulholland, Michael
    Endocrinology, 2014;155(2):429-40.
    Species: Mouse
    Sample Types: In Vivo
    Applications: In Vivo
  42. A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures.
    Authors: Matsumoto, Shinji, Fujii, Shinsuke, Sato, Akira, Ibuka, Souji, Kagawa, Yoshinor, Ishii, Masaru, Kikuchi, Akira
    EMBO J, 2014;33(7):702-18.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  43. Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel.
    Authors: Jin L, Feng T, Shih H, Zerda R, Luo A, Hsu J, Mahdavi A, Sander M, Tirrell D, Riggs A, Ku H
    Proc Natl Acad Sci U S A, 2013;110(10):3907-12.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  44. CSF-1 receptor-dependent colon development, homeostasis and inflammatory stress response.
    Authors: Huynh D, Akcora D, Malaterre J, Chan C, Dai X, Bertoncello I, Stanley E, Ramsay R
    PLoS ONE, 2013;8(2):e56951.
    Species: Mouse
    Sample Types: Whole Cells
    Applications: Bioassay
  45. In vivo and in vitro models for the therapeutic targeting of Wnt signaling using a Tet-ODeltaN89beta-catenin system.
    Authors: Jarde T, Evans R, McQuillan K, Parry L, Feng G, Alvares B, Clarke A, Dale T
    Oncogene, 2013;32(7):883-93.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Bioassay
  46. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling.
    Authors: Wong, Vivian W, Stange, Daniel E, Page, Mahalia, Buczacki, Simon, Wabik, Agnieszk, Itami, Satoshi, van de Wetering, Marc, Poulsom, Richard, Wright, Nicholas, Trotter, Matthew, Watt, Fiona M, Winton, Doug J, Clevers, Hans, Jensen, Kim B
    Nat Cell Biol, 2012;14(4):401-8.
    Species: Mouse
    Sample Types: Whole Tissue
    Applications: Cell Culture
  47. Human RSPO1/R-spondin1 is expressed during early ovary development and augments beta-catenin signaling.
    Authors: Tomaselli S, Megiorni F, Lin L, Mazzilli MC, Gerrelli D, Majore S, Grammatico P, Achermann JC
    PLoS ONE, 2011;6(1):e16366.
    Species: Human
    Sample Types: Whole Cells
    Applications: Bioassay

FAQs

No product specific FAQs exist for this product, however you may

View all Proteins and Enzyme FAQs

Recombinant Proteins

Reconstitution Buffers

Reviews for Recombinant Mouse R-Spondin 1 Protein, CF

Average Rating: 4.6 (Based on 5 Reviews)

5 Star
60%
4 Star
40%
3 Star
0%
2 Star
0%
1 Star
0%

Have you used Recombinant Mouse R-Spondin 1 Protein, CF?

Submit a review and receive an Amazon gift card.

$25/€18/£15/$25CAN/¥75 Yuan/¥1250 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review

Filter by:


Recombinant Mouse R-Spondin 1 Protein, CF
By Anonymous on 11/30/2018
Application: CellProlif

Recombinant Mouse R-Spondin 1 Protein, CF
By Anonymous on 09/08/2017
Application: Cell Culture

Recombinant Mouse R-Spondin 1 Protein, CF
By Anonymous on 09/08/2017
Application: Apoptosis assay

Recombinant Mouse R-Spondin 1 Protein, CF
By Anonymous on 04/21/2017
Application:

Recombinant Mouse R-Spondin 1 Protein, CF
By Anonymous on 12/15/2016
Application: Stem/Immune cell maintenance or differentiation

Used in culture media to differentiate stem cells towards a pancreatic endocrine progenitor cell fate.