TROP-2, also named tumor-associated calcium signal transducer 2 (TACSTD2), GA733 tumor associated antigen, and epithelial glycoprotein-1 (EGP-1), is a type I transmembrane protein highly expressed in carcinomas. It was originally identified as an antigen present on human gastrointestinal tumors and is the second of two members of this family. The other family member is GA7332, also called EpCAM, TROP1, 171A, gp40 and KSA. TROP2 can transduce an intracellular calcium signal and may play a role in tumor growth. It also has adhesive functions.
Mouse TROP‑2 Antibody
R&D Systems | Catalog # AF1122
Key Product Details
Species Reactivity
Validated:
Cited:
Applications
Validated:
Cited:
Label
Antibody Source
Product Specifications
Immunogen
Ser82-Thr268
Accession # Q8BGV3
Specificity
Clonality
Host
Isotype
Scientific Data Images for Mouse TROP‑2 Antibody
Detection of TROP‑2 in mIMCD-3 Mouse Cell Line by Flow Cytometry.
mIMCD-3 mouse epithelial cell line was stained with Goat Anti-Mouse TROP-2 Antigen Affinity-purified Polyclonal Antibody (Catalog # AF1122, filled histogram) or isotype control antibody (Catalog # AB-108-C, open histogram), followed by Allophycocyanin-conjugated Anti-Goat IgG Secondary Antibody (Catalog # F0108).
TROP‑2 in XB2 Mouse Cell Line.
TROP-2 was detected in immersion fixed XB2 mouse teratoma keratinocyte cell line using Goat Anti-Mouse TROP-2 Antigen Affinity-purified Polyclonal Antibody (Catalog # AF1122) at 10 µg/mL for 3 hours at room temperature. Cells were stained using the NorthernLights™ 557-conjugated Anti-Goat IgG Secondary Antibody (yellow; Catalog # NL001) and counterstained with DAPI (blue). View our protocol for Fluorescent ICC Staining of Cells on Coverslips.
TROP‑2 in Mouse Skin.
TROP-2 was detected in immersion fixed paraffin-embedded sections of mouse skin using Goat Anti-Mouse TROP-2 Antigen Affinity-purified Polyclonal Antibody (Catalog # AF1122) at 3 µg/mL for 1 hour at room temperature followed by incubation with the Anti-Goat IgG VisUCyte™ HRP Polymer Antibody (Catalog # VC004). Tissue was stained using DAB (brown) and counterstained with hematoxylin (blue). Specific staining was localized to cell membranes in keratinocytes. View our protocol for IHC Staining with VisUCyte HRP Polymer Detection Reagents.
Detection of Mouse TROP-2 by Immunohistochemistry
Gene expression analysis of Pten mutant prostates.(A) i) Heatmap demonstrating that control samples (C1-C5) show similar expression patterns to each other, as do mutant samples (M1-M5). ii) Genes chosen for validation are indicated in heatmap derived from the average of control and mutant samples. Red indicates genes that are upregulated in mutants (116 genes), relative to controls, and green indicates genes that are downregulated in the mutants relative to controls (91 genes). (B) Quantitative RTPCR validation of indicated androgen-dependent genes differentially expressed in mutants and controls (Clu p = 0.001, Trop2 p = 0.002, Nkx3.1 p = 0.02, and Pbsn p = 0.003). mRNA accumulation was normalized to GAPDH. (C) Differential antibody staining of CLU, TROP2, and PBSN at P10 validated microarray results. (D) Whole mount in situ hybridization of Nkx3.1 shows a decrease in expression in P10 mutant prostates. The anterior prostate (AP), dorsal lateral prostate (DL) and urethra (UR) are indicated. Red arrows indicate presence of stain in the controls and absence in the mutant. “*” denotes statistical significance. Image collected and cropped by CiteAb from the following open publication (https://dx.plos.org/10.1371/journal.pone.0129470), licensed under a CC-BY license. Not internally tested by R&D Systems.Detection of Mouse TROP-2 by Immunohistochemistry-Paraffin
Pten deletion does not lead to an accumulation of progenitor cells.Antibody staining on sections of P0 and P7 prostates with antibodies to CLU and TROP2 shows no accumulation of these proteins at earlier stages of development in controls (A, B, C, D). Increased expression of these markers is seen in the mutant (E, F, G, H) relative to controls from P7. Red arrowheads indicate buds. Image collected and cropped by CiteAb from the following open publication (https://dx.plos.org/10.1371/journal.pone.0129470), licensed under a CC-BY license. Not internally tested by R&D Systems.Detection of Mouse TROP-2 by Immunohistochemistry
Gene expression analysis of Pten mutant prostates.(A) i) Heatmap demonstrating that control samples (C1-C5) show similar expression patterns to each other, as do mutant samples (M1-M5). ii) Genes chosen for validation are indicated in heatmap derived from the average of control and mutant samples. Red indicates genes that are upregulated in mutants (116 genes), relative to controls, and green indicates genes that are downregulated in the mutants relative to controls (91 genes). (B) Quantitative RTPCR validation of indicated androgen-dependent genes differentially expressed in mutants and controls (Clu p = 0.001, Trop2 p = 0.002, Nkx3.1 p = 0.02, and Pbsn p = 0.003). mRNA accumulation was normalized to GAPDH. (C) Differential antibody staining of CLU, TROP2, and PBSN at P10 validated microarray results. (D) Whole mount in situ hybridization of Nkx3.1 shows a decrease in expression in P10 mutant prostates. The anterior prostate (AP), dorsal lateral prostate (DL) and urethra (UR) are indicated. Red arrows indicate presence of stain in the controls and absence in the mutant. “*” denotes statistical significance. Image collected and cropped by CiteAb from the following open publication (https://dx.plos.org/10.1371/journal.pone.0129470), licensed under a CC-BY license. Not internally tested by R&D Systems.Applications for Mouse TROP‑2 Antibody
CyTOF-ready
Flow Cytometry
Sample: mIMCD-3 Mouse Epithelial Cell Line
Immunocytochemistry
Sample: Immersion fixed XB2 mouse teratoma keratinocyte cell line
Immunohistochemistry
Sample:
Immersion fixed paraffin-embedded sections of mouse skin
Western Blot
Sample: Recombinant Mouse TROP‑2
Flow Cytometry Panel Builder
Bio-Techne Knows Flow Cytometry
Save time and reduce costly mistakes by quickly finding compatible reagents using the Panel Builder Tool.
Advanced Features
- Spectra Viewer - Custom analysis of spectra from multiple fluorochromes
- Spillover Popups - Visualize the spectra of individual fluorochromes
- Antigen Density Selector - Match fluorochrome brightness with antigen density
Formulation, Preparation, and Storage
Purification
Reconstitution
Reconstitute at 0.2 mg/mL in sterile PBS. For liquid material, refer to CoA for concentration.
Formulation
Shipping
Stability & Storage
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 6 months, -20 to -70 °C under sterile conditions after reconstitution.
Calculators
Background: TROP-2
Long Name
Alternate Names
Gene Symbol
UniProt
Additional TROP-2 Products
Product Documents for Mouse TROP‑2 Antibody
Certificate of Analysis
To download a Certificate of Analysis, please enter a lot or batch number in the search box below.
Note: Certificate of Analysis not available for kit components.
Product Specific Notices for Mouse TROP‑2 Antibody
For research use only
Related Research Areas
Citations for Mouse TROP‑2 Antibody
Customer Reviews for Mouse TROP‑2 Antibody
There are currently no reviews for this product. Be the first to review Mouse TROP‑2 Antibody and earn rewards!
Have you used Mouse TROP‑2 Antibody?
Submit a review and receive an Amazon gift card!
$25/€18/£15/$25CAN/¥2500 Yen for a review with an image
$10/€7/£6/$10CAN/¥1110 Yen for a review without an image
Submit a review
Protocols
Find general support by application which include: protocols, troubleshooting, illustrated assays, videos and webinars.
- 7-Amino Actinomycin D (7-AAD) Cell Viability Flow Cytometry Protocol
- Antigen Retrieval Protocol (PIER)
- Antigen Retrieval for Frozen Sections Protocol
- Appropriate Fixation of IHC/ICC Samples
- Cellular Response to Hypoxia Protocols
- Chromogenic IHC Staining of Formalin-Fixed Paraffin-Embedded (FFPE) Tissue Protocol
- Chromogenic Immunohistochemistry Staining of Frozen Tissue
- Detection & Visualization of Antibody Binding
- Extracellular Membrane Flow Cytometry Protocol
- Flow Cytometry Protocol for Cell Surface Markers
- Flow Cytometry Protocol for Staining Membrane Associated Proteins
- Flow Cytometry Staining Protocols
- Flow Cytometry Troubleshooting Guide
- Fluorescent IHC Staining of Frozen Tissue Protocol
- Graphic Protocol for Heat-induced Epitope Retrieval
- Graphic Protocol for the Preparation and Fluorescent IHC Staining of Frozen Tissue Sections
- Graphic Protocol for the Preparation and Fluorescent IHC Staining of Paraffin-embedded Tissue Sections
- Graphic Protocol for the Preparation of Gelatin-coated Slides for Histological Tissue Sections
- ICC Cell Smear Protocol for Suspension Cells
- ICC Immunocytochemistry Protocol Videos
- ICC for Adherent Cells
- IHC Sample Preparation (Frozen sections vs Paraffin)
- Immunocytochemistry (ICC) Protocol
- Immunocytochemistry Troubleshooting
- Immunofluorescence of Organoids Embedded in Cultrex Basement Membrane Extract
- Immunofluorescent IHC Staining of Formalin-Fixed Paraffin-Embedded (FFPE) Tissue Protocol
- Immunohistochemistry (IHC) and Immunocytochemistry (ICC) Protocols
- Immunohistochemistry Frozen Troubleshooting
- Immunohistochemistry Paraffin Troubleshooting
- Intracellular Flow Cytometry Protocol Using Alcohol (Methanol)
- Intracellular Flow Cytometry Protocol Using Detergents
- Intracellular Nuclear Staining Flow Cytometry Protocol Using Detergents
- Intracellular Staining Flow Cytometry Protocol Using Alcohol Permeabilization
- Intracellular Staining Flow Cytometry Protocol Using Detergents to Permeabilize Cells
- Preparing Samples for IHC/ICC Experiments
- Preventing Non-Specific Staining (Non-Specific Binding)
- Primary Antibody Selection & Optimization
- Propidium Iodide Cell Viability Flow Cytometry Protocol
- Protocol for Heat-Induced Epitope Retrieval (HIER)
- Protocol for Making a 4% Formaldehyde Solution in PBS
- Protocol for VisUCyte™ HRP Polymer Detection Reagent
- Protocol for the Characterization of Human Th22 Cells
- Protocol for the Characterization of Human Th9 Cells
- Protocol for the Fluorescent ICC Staining of Cell Smears - Graphic
- Protocol for the Fluorescent ICC Staining of Cultured Cells on Coverslips - Graphic
- Protocol for the Preparation & Fixation of Cells on Coverslips
- Protocol for the Preparation and Chromogenic IHC Staining of Frozen Tissue Sections
- Protocol for the Preparation and Chromogenic IHC Staining of Frozen Tissue Sections - Graphic
- Protocol for the Preparation and Chromogenic IHC Staining of Paraffin-embedded Tissue Sections
- Protocol for the Preparation and Chromogenic IHC Staining of Paraffin-embedded Tissue Sections - Graphic
- Protocol for the Preparation and Fluorescent ICC Staining of Cells on Coverslips
- Protocol for the Preparation and Fluorescent ICC Staining of Non-adherent Cells
- Protocol for the Preparation and Fluorescent ICC Staining of Stem Cells on Coverslips
- Protocol for the Preparation and Fluorescent IHC Staining of Frozen Tissue Sections
- Protocol for the Preparation and Fluorescent IHC Staining of Paraffin-embedded Tissue Sections
- Protocol for the Preparation of Gelatin-coated Slides for Histological Tissue Sections
- Protocol for the Preparation of a Cell Smear for Non-adherent Cell ICC - Graphic
- Protocol: Annexin V and PI Staining by Flow Cytometry
- Protocol: Annexin V and PI Staining for Apoptosis by Flow Cytometry
- R&D Systems Quality Control Western Blot Protocol
- TUNEL and Active Caspase-3 Detection by IHC/ICC Protocol
- The Importance of IHC/ICC Controls
- Troubleshooting Guide: Fluorokine Flow Cytometry Kits
- Troubleshooting Guide: Immunohistochemistry
- Troubleshooting Guide: Western Blot Figures
- Western Blot Conditions
- Western Blot Protocol
- Western Blot Protocol for Cell Lysates
- Western Blot Troubleshooting
- Western Blot Troubleshooting Guide
- View all Protocols, Troubleshooting, Illustrated assays and Webinars